Abstract

The reflectivity of absorbing Bragg reflectors consisting of a GaAs/AlAs Bragg mirror and a InGaAs/InGaAsP multiple-quantum-well cavity layer was studied as a function of temperature. An absorption dip in the stop band due to the optical confinement of the Fabry-Perot resonance was observed in the reflectivity spectra. The absorption intensity of the dip increased with temperature and was explained by the resonant coincidence of the Fabry-Perot cavity mode and the quantum-well absorption. The temperature-dependent reflectivity spectra were successfully reproduced using the transfer matrix method and the linear dependence of the refractive index on temperature.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, �Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,� IEEE J. of Selected Topics in Quantum Electron. 2, 454-464 (1996).
    [CrossRef]
  2. J.L. Shen, T. Jung, S. Murthy, T. Chau, M. C. Wu, Y. H. Lo, C. L. Chua and Z. H. Zhu, �Mode locking of external-cavity semiconductor lasers with saturable Bragg reflectors,� J. Opt. Soc. Am. B 16, 1064-1067 (1999).
    [CrossRef]
  3. K. Ogawa, Y. Matsui, T. Itatani, and K. Ouchi, �Spectral characteristics of an InP/InGaAs distribution absorbing Bragg reflector,� Appl. Phys. Lett. 72, 155-157 (1998).
    [CrossRef]
  4. V.V. Evstropov, M. A. Kaliteevskii, A. L. Lipko, M. A. Sinitsyn, B. V. Tsarenkov, Yu. M. Shernyakov, and B. S. Yavich, �Semiconductor Bragg reflector with absorbing layers,� Semicond. 30, 57- 59 (1996).
  5. A.V. Kavokin, M. A. Kaliteevski, �Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures,� J. Appl. Phys. 79, 595-598 (1997).
    [CrossRef]
  6. K. Ogawa, Y. Matsui, T. Itatani, and K. Ouchi, �Carrier relaxation in an InP/InGaAs nonlinear Bragg reflector,� Appl. Phys. Lett. 73, 297-299 (1998).
    [CrossRef]
  7. E.J. Mozdy, M. A. Jaspan, Z. H. Zhu, Y. H. Lo, C. R. Pollock, R. Bhat, and H. Hong, �NaCl:OH - color center laser modelocked by a novel bonded saturable Bragg reflector,� Opt. Commun. 151, 62-64 (1998).
    [CrossRef]
  8. G.M. Yang, M. H. MacDougal, H. Zhao, and P. D. Kapkus, �Microcavity effects on the spontaneous emission from InGaAs/GaAs quantum wells,� J. Appl. Phys. 78, 3605-3609 (1995).
    [CrossRef]
  9. J.I. Pankove, Optical processes in semiconductors (Prentice-Hall, 1971).
  10. P. Yeh, Optical waves and layered media (John Wiley& Sons, 1991).
  11. R.E. Fern and A. Onton, �Refractive index of AlAs,� J. Appl. Phys. 42, 3499-3500 (1971).
    [CrossRef]
  12. J.S. Blakemore, �Intrinsic density ni (T) in GaAs: Deduced from band gap and effective mass parameters and derived independently from Cr acceptor capture and emission coefficients,� J. Appl. Phys. 53, 520-531 (1982).
    [CrossRef]
  13. A. Yariv and P. Yeh, Optical waves in crystals (Wiley, 1983).
  14. J. Talghader and J. S. Smith, �Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multiplayer optical cavities,� Appl. Phys. Lett. 66, 335-337 (1995).
    [CrossRef]
  15. E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, �Excitonic transitions and exciton damping processes in InGaAs/InP,� J. Appl. Phys. 58, 2196 (1986).
    [CrossRef]
  16. J.L. Shen, J. Y. Chang, H. C. Liu, W. C. Chou, Y. F. Chen, T. Jung, and M. C. Wu, �Nearly in-plane photoluminescence studies in asymmetric semiconductor microcavities,� Solid State Commun. 116, 431-435 (2000).
    [CrossRef]

Other

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, �Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,� IEEE J. of Selected Topics in Quantum Electron. 2, 454-464 (1996).
[CrossRef]

J.L. Shen, T. Jung, S. Murthy, T. Chau, M. C. Wu, Y. H. Lo, C. L. Chua and Z. H. Zhu, �Mode locking of external-cavity semiconductor lasers with saturable Bragg reflectors,� J. Opt. Soc. Am. B 16, 1064-1067 (1999).
[CrossRef]

K. Ogawa, Y. Matsui, T. Itatani, and K. Ouchi, �Spectral characteristics of an InP/InGaAs distribution absorbing Bragg reflector,� Appl. Phys. Lett. 72, 155-157 (1998).
[CrossRef]

V.V. Evstropov, M. A. Kaliteevskii, A. L. Lipko, M. A. Sinitsyn, B. V. Tsarenkov, Yu. M. Shernyakov, and B. S. Yavich, �Semiconductor Bragg reflector with absorbing layers,� Semicond. 30, 57- 59 (1996).

A.V. Kavokin, M. A. Kaliteevski, �Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures,� J. Appl. Phys. 79, 595-598 (1997).
[CrossRef]

K. Ogawa, Y. Matsui, T. Itatani, and K. Ouchi, �Carrier relaxation in an InP/InGaAs nonlinear Bragg reflector,� Appl. Phys. Lett. 73, 297-299 (1998).
[CrossRef]

E.J. Mozdy, M. A. Jaspan, Z. H. Zhu, Y. H. Lo, C. R. Pollock, R. Bhat, and H. Hong, �NaCl:OH - color center laser modelocked by a novel bonded saturable Bragg reflector,� Opt. Commun. 151, 62-64 (1998).
[CrossRef]

G.M. Yang, M. H. MacDougal, H. Zhao, and P. D. Kapkus, �Microcavity effects on the spontaneous emission from InGaAs/GaAs quantum wells,� J. Appl. Phys. 78, 3605-3609 (1995).
[CrossRef]

J.I. Pankove, Optical processes in semiconductors (Prentice-Hall, 1971).

P. Yeh, Optical waves and layered media (John Wiley& Sons, 1991).

R.E. Fern and A. Onton, �Refractive index of AlAs,� J. Appl. Phys. 42, 3499-3500 (1971).
[CrossRef]

J.S. Blakemore, �Intrinsic density ni (T) in GaAs: Deduced from band gap and effective mass parameters and derived independently from Cr acceptor capture and emission coefficients,� J. Appl. Phys. 53, 520-531 (1982).
[CrossRef]

A. Yariv and P. Yeh, Optical waves in crystals (Wiley, 1983).

J. Talghader and J. S. Smith, �Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multiplayer optical cavities,� Appl. Phys. Lett. 66, 335-337 (1995).
[CrossRef]

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, �Excitonic transitions and exciton damping processes in InGaAs/InP,� J. Appl. Phys. 58, 2196 (1986).
[CrossRef]

J.L. Shen, J. Y. Chang, H. C. Liu, W. C. Chou, Y. F. Chen, T. Jung, and M. C. Wu, �Nearly in-plane photoluminescence studies in asymmetric semiconductor microcavities,� Solid State Commun. 116, 431-435 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Measured reflection spectra of absorbing Bragg reflectors as a function of temperature.

Fig. 2.
Fig. 2.

Calculated reflection spectra of absorbing Bragg reflectors as a function of temperature.

Table. 1.
Table. 1.

Values of dip positions, κs , and αs as functions of temperature.

Fig. 3.
Fig. 3.

Temperature dependence of the experimentally measured (solid circles) and theoretically predicted (solid line) bandwidth of the stop band.

Fig. 4.
Fig. 4.

Temperature dependence of the experimentally measured (solid circles) and theoretically predicted (solid line) center of the stop band.

Fig. 5.
Fig. 5.

Temperature dependence of the experimentally measured (solid circles) and theoretically predicted (solid line) dip position in the stop band.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( M 11 M 12 M 21 M 22 ) = D 0 1 · D c · P c · D c 1 · [ D L · P L · D L 1 · D H · P H · D H 1 ] 27 · D H ,
Δ ω ( T ) = 4 π · sin 1 n H ( T ) n L ( T ) n H ( T ) + n L ( T ) · ω ( T ) ,

Metrics