Abstract

We report on the first three-dimensional, volumetric, tomographic localization of vascular reactivity in the brain. To this end we developed a model-based iterative image reconstruction scheme that employs adjoint differentiation methods to minimize the difference between measured and predicted data. The necessary human-head geometry and optode locations were determined with a photogrammetric method. To illustrate the performance of the technique, the three-dimensional distribution of changes in the concentration of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin during a Valsalva maneuver were visualized. The observed results are consistent with previously reported effects concerning optical responses to hemodynamic perturbations.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
    [Crossref]
  2. Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
    [Crossref] [PubMed]
  3. E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000).
    [Crossref] [PubMed]
  4. M. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Optics Express 6, 49–57 (2000), http://www.opticsexpress.org/oearchive/source/18957.htm
    [Crossref] [PubMed]
  5. S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
    [Crossref] [PubMed]
  6. M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
    [Crossref] [PubMed]
  7. H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
    [Crossref]
  8. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
    [Crossref] [PubMed]
  9. M. Tamura, Y. Hoshi, and F. Okada, “Localized near-infrared spectroscopy and functional optical imaging of brain activity,” Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences. 352(1354), 737–42 (1997).
    [Crossref]
  10. A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
    [Crossref]
  11. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
    [Crossref] [PubMed]
  12. G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychonomic Bulletin and Review 5, 535–563 (1995).
    [Crossref]
  13. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” J. Med. Phys. 22, 1997–2005 (1995).
    [Crossref]
  14. Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neuroscience Letters,  150, 5–8 (1993).
    [Crossref] [PubMed]
  15. S. R. Hintz, W. F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
    [Crossref] [PubMed]
  16. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
    [Crossref]
  17. A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Medical Physics 26, 1698–1707 (1999).
    [Crossref] [PubMed]
  18. R. Roy and E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I Theory and formulation,” Opt. Express 4, 353–371 (1999). http://www.opticsexpress.org/oearchive/source/9268.htm
    [Crossref] [PubMed]
  19. S. R. Arridge and M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1998). http://www.opticsexpress.org/oearchive/source/10447.htm
    [Crossref] [PubMed]
  20. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–92 (1995).
    [Crossref] [PubMed]
  21. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [Crossref] [PubMed]
  22. H. Jiang, K. D. Paulsen, and U. L. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
    [Crossref] [PubMed]
  23. G. Abdoulaev, A. Varone, and G. Zanetti, “An object oriented flow solver for the CRS4 virtual vascular project,” in Proc. Of the 3rd European Conf. on Numerical Mathematics and Advanced Applications, P. Neittaanmaki, T. Tiihonen, and P. Tarvainen (eds.) (World Scientific, Singapore), 407–415 (2000).
  24. J. H. Bramble, J. E. Pasciak, and J. Xu, “Parallel multilevel preconditioners,” Math. Comp. 55, 1–22 (1990).
    [Crossref]
  25. Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt.40 (2001) in press.
    [Crossref]
  26. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
    [Crossref] [PubMed]
  27. A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997).
    [Crossref]
  28. D.B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, and P. Van der zee, “Giving Reverse Differentiation a Helping Hand,” Optimization Methods and Software 8, 53–67 (1997).
    [Crossref]
  29. H. M. Karara, Handbook of Non-topographic Photogrammetry (American Society of Photogrammetry, Falls Church, VA, 1989).
  30. E. F. Church, Elements of Photogrammetry (Syracuse University Press, New York, 1948).
  31. G. Deng and W. Falg, “An evaluation of an off-the-shelf digital close-range photogrammetric software package,” Photogrammetric Engineering and Remote Sensing67, 227–233 (2001).
  32. R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufman Publishers, 1987).
  33. C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).
  34. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A.Y. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirex, S. L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
    [Crossref]
  35. F. P. Tiecks, C. Douville, S. Byrd, A. M. Lam, and D. W. Newell, “Evaluation of impaired cerebral autoregulation by the Valsalva Maneuver,” Stroke 27, 1177–1182 (1996).
    [Crossref] [PubMed]
  36. X. Cheng and D.A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Optics Express 4, 299–307 (1999), http://www.opticsexpress.org/oearchive/source/9108.htm
    [Crossref] [PubMed]
  37. S. Wray, M. Cope, and D. T. Delpy, “Characteristics of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim Biophys Acta 933, 184–192 (1988).
    [Crossref] [PubMed]
  38. T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissues,” in Biomedical Topical Meetings, OSA Technical digest (Optical Society of America, Washington DC, 2000), pp. 339–341.
  39. Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org/oearchive/source/33900.htm
    [Crossref] [PubMed]
  40. Y. Hoshi, N. Kobayashi, and M. Tamura, “Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model,” J. Appl. Physiol. 90, 1657–1662 (2001).
    [PubMed]
  41. F. P. Tiecks, A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell, “Effects of the Valsalva maneuver on cerebral circulation in healthy adults,” Stroke 26, 1386–1392 (1995).
    [Crossref] [PubMed]
  42. E. P. Sharpey-Schafer and P. J. Taylor, “Absent circulatory reflexes in diabetic neuritis,” Lancet 1, 559–562 (1960).
    [Crossref] [PubMed]
  43. W. I. Schievink, J. M. Karemaker, L. M. Hageman, and D. J. van der Werf, “Circumstances surrounding aneurismal hemorrhage,” Surg. Neurol. 32, 266–272 (1989).
    [Crossref] [PubMed]
  44. J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
    [Crossref] [PubMed]
  45. B. F. Matta, J. Lam, and P. Smileswiski, “The effect of the Valsalva maneuver on cerebral hemodynamics: a near infrared spectroscopy study,” J. Neurosurgical Anesthesiology 8, 601 (1996).
  46. F. Pott, J. J. Van Lieshout, K. Ide, P. Madsen, and N. H. Secher, “Middle cerebral artery blood velocity during Valsalva mameuver in the standing position,” J. Appl. Physiol. 88, 1545–1550 (2000).
    [PubMed]
  47. S. L. Dawson, R. B. Panerai, and J. F. Potter, “Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver,” J. Appl. Physiol. 86, 675–680 (1999).
    [PubMed]
  48. J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics and intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
    [Crossref] [PubMed]
  49. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinnberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
    [Crossref] [PubMed]
  50. S. E. Maier, C. J. Hardy, and F. A. Jolesz, “Brain and cerebrospinal fluid motion: real time quantification with M-mode MR imaging,” Radiology 193, 477–483 (1994).
    [PubMed]

2001 (4)

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[Crossref] [PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org/oearchive/source/33900.htm
[Crossref] [PubMed]

Y. Hoshi, N. Kobayashi, and M. Tamura, “Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model,” J. Appl. Physiol. 90, 1657–1662 (2001).
[PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinnberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[Crossref] [PubMed]

2000 (6)

F. Pott, J. J. Van Lieshout, K. Ide, P. Madsen, and N. H. Secher, “Middle cerebral artery blood velocity during Valsalva mameuver in the standing position,” J. Appl. Physiol. 88, 1545–1550 (2000).
[PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A.Y. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirex, S. L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[Crossref]

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000).
[Crossref] [PubMed]

M. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Optics Express 6, 49–57 (2000), http://www.opticsexpress.org/oearchive/source/18957.htm
[Crossref] [PubMed]

1999 (9)

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
[Crossref]

S. R. Hintz, W. F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[Crossref]

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Medical Physics 26, 1698–1707 (1999).
[Crossref] [PubMed]

R. Roy and E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I Theory and formulation,” Opt. Express 4, 353–371 (1999). http://www.opticsexpress.org/oearchive/source/9268.htm
[Crossref] [PubMed]

X. Cheng and D.A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Optics Express 4, 299–307 (1999), http://www.opticsexpress.org/oearchive/source/9108.htm
[Crossref] [PubMed]

S. L. Dawson, R. B. Panerai, and J. F. Potter, “Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver,” J. Appl. Physiol. 86, 675–680 (1999).
[PubMed]

1998 (1)

1997 (4)

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997).
[Crossref]

D.B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, and P. Van der zee, “Giving Reverse Differentiation a Helping Hand,” Optimization Methods and Software 8, 53–67 (1997).
[Crossref]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[Crossref] [PubMed]

M. Tamura, Y. Hoshi, and F. Okada, “Localized near-infrared spectroscopy and functional optical imaging of brain activity,” Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences. 352(1354), 737–42 (1997).
[Crossref]

1996 (4)

A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
[Crossref]

H. Jiang, K. D. Paulsen, and U. L. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[Crossref] [PubMed]

B. F. Matta, J. Lam, and P. Smileswiski, “The effect of the Valsalva maneuver on cerebral hemodynamics: a near infrared spectroscopy study,” J. Neurosurgical Anesthesiology 8, 601 (1996).

F. P. Tiecks, C. Douville, S. Byrd, A. M. Lam, and D. W. Newell, “Evaluation of impaired cerebral autoregulation by the Valsalva Maneuver,” Stroke 27, 1177–1182 (1996).
[Crossref] [PubMed]

1995 (5)

F. P. Tiecks, A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell, “Effects of the Valsalva maneuver on cerebral circulation in healthy adults,” Stroke 26, 1386–1392 (1995).
[Crossref] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–92 (1995).
[Crossref] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychonomic Bulletin and Review 5, 535–563 (1995).
[Crossref]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” J. Med. Phys. 22, 1997–2005 (1995).
[Crossref]

1994 (1)

S. E. Maier, C. J. Hardy, and F. A. Jolesz, “Brain and cerebrospinal fluid motion: real time quantification with M-mode MR imaging,” Radiology 193, 477–483 (1994).
[PubMed]

1993 (2)

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neuroscience Letters,  150, 5–8 (1993).
[Crossref] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

1990 (1)

J. H. Bramble, J. E. Pasciak, and J. Xu, “Parallel multilevel preconditioners,” Math. Comp. 55, 1–22 (1990).
[Crossref]

1989 (1)

W. I. Schievink, J. M. Karemaker, L. M. Hageman, and D. J. van der Werf, “Circumstances surrounding aneurismal hemorrhage,” Surg. Neurol. 32, 266–272 (1989).
[Crossref] [PubMed]

1988 (1)

S. Wray, M. Cope, and D. T. Delpy, “Characteristics of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim Biophys Acta 933, 184–192 (1988).
[Crossref] [PubMed]

1979 (2)

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics and intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

1960 (1)

E. P. Sharpey-Schafer and P. J. Taylor, “Absent circulatory reflexes in diabetic neuritis,” Lancet 1, 559–562 (1960).
[Crossref] [PubMed]

Abdoulaev, G.

G. Abdoulaev, A. Varone, and G. Zanetti, “An object oriented flow solver for the CRS4 virtual vascular project,” in Proc. Of the 3rd European Conf. on Numerical Mathematics and Advanced Applications, P. Neittaanmaki, T. Tiihonen, and P. Tarvainen (eds.) (World Scientific, Singapore), 407–415 (2000).

Alfano, R. R.

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Andronica, R.

Arif, I.

Arridge, S. R.

S. R. Arridge and M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1998). http://www.opticsexpress.org/oearchive/source/10447.htm
[Crossref] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–92 (1995).
[Crossref] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

Barbour, R. L.

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org/oearchive/source/33900.htm
[Crossref] [PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A.Y. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirex, S. L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[Crossref]

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt.40 (2001) in press.
[Crossref]

Barbour, S. L. S.

Barsky, B. A.

R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufman Publishers, 1987).

Bartels, R. H.

R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufman Publishers, 1987).

Beatty, J. C.

R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufman Publishers, 1987).

Benaron, D. A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

S. R. Hintz, W. F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

Bluestone, A.Y.

Boas, D.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

Boas, D. A.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[Crossref] [PubMed]

Boas, D.A.

X. Cheng and D.A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Optics Express 4, 299–307 (1999), http://www.opticsexpress.org/oearchive/source/9108.htm
[Crossref] [PubMed]

Bramble, J. H.

J. H. Bramble, J. E. Pasciak, and J. Xu, “Parallel multilevel preconditioners,” Math. Comp. 55, 1–22 (1990).
[Crossref]

Byrd, S.

F. P. Tiecks, C. Douville, S. Byrd, A. M. Lam, and D. W. Newell, “Evaluation of impaired cerebral autoregulation by the Valsalva Maneuver,” Stroke 27, 1177–1182 (1996).
[Crossref] [PubMed]

Chance, B.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[Crossref] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Cheng, X.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[Crossref] [PubMed]

X. Cheng and D.A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Optics Express 4, 299–307 (1999), http://www.opticsexpress.org/oearchive/source/9108.htm
[Crossref] [PubMed]

Cheong, W.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

Cheong, W. F.

S. R. Hintz, W. F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

Christianson, D. B.

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997).
[Crossref]

Christianson, D.B.

D.B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, and P. Van der zee, “Giving Reverse Differentiation a Helping Hand,” Optimization Methods and Software 8, 53–67 (1997).
[Crossref]

Church, E. F.

E. F. Church, Elements of Photogrammetry (Syracuse University Press, New York, 1948).

Cope, M.

S. Wray, M. Cope, and D. T. Delpy, “Characteristics of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim Biophys Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Davies, A. J.

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997).
[Crossref]

D.B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, and P. Van der zee, “Giving Reverse Differentiation a Helping Hand,” Optimization Methods and Software 8, 53–67 (1997).
[Crossref]

Dawson, S. L.

S. L. Dawson, R. B. Panerai, and J. F. Potter, “Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver,” J. Appl. Physiol. 86, 675–680 (1999).
[PubMed]

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–92 (1995).
[Crossref] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

S. Wray, M. Cope, and D. T. Delpy, “Characteristics of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim Biophys Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Deng, G.

G. Deng and W. Falg, “An evaluation of an off-the-shelf digital close-range photogrammetric software package,” Photogrammetric Engineering and Remote Sensing67, 227–233 (2001).

Dirnagl, U.

A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
[Crossref]

Dixon, L. C. W.

D.B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, and P. Van der zee, “Giving Reverse Differentiation a Helping Hand,” Optimization Methods and Software 8, 53–67 (1997).
[Crossref]

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997).
[Crossref]

Douville, C.

F. P. Tiecks, C. Douville, S. Byrd, A. M. Lam, and D. W. Newell, “Evaluation of impaired cerebral autoregulation by the Valsalva Maneuver,” Stroke 27, 1177–1182 (1996).
[Crossref] [PubMed]

F. P. Tiecks, A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell, “Effects of the Valsalva maneuver on cerebral circulation in healthy adults,” Stroke 26, 1386–1392 (1995).
[Crossref] [PubMed]

Drexler, S.

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Fabiani, M.

G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychonomic Bulletin and Review 5, 535–563 (1995).
[Crossref]

Falg, W.

G. Deng and W. Falg, “An evaluation of an off-the-shelf digital close-range photogrammetric software package,” Photogrammetric Engineering and Remote Sensing67, 227–233 (2001).

Fantini, S.

M. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Optics Express 6, 49–57 (2000), http://www.opticsexpress.org/oearchive/source/18957.htm
[Crossref] [PubMed]

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Filiaci, M. E.

M. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Optics Express 6, 49–57 (2000), http://www.opticsexpress.org/oearchive/source/18957.htm
[Crossref] [PubMed]

Frahm, J.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
[Crossref]

Franceschini, M.

M. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Optics Express 6, 49–57 (2000), http://www.opticsexpress.org/oearchive/source/18957.htm
[Crossref] [PubMed]

Franceschini, M. A.

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Gaudette, T.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[Crossref] [PubMed]

Giannotta, S. L.

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics and intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

Graber, H. L.

Gratton, E.

M. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Optics Express 6, 49–57 (2000), http://www.opticsexpress.org/oearchive/source/18957.htm
[Crossref] [PubMed]

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Gratton, G.

G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychonomic Bulletin and Review 5, 535–563 (1995).
[Crossref]

Hageman, L. M.

W. I. Schievink, J. M. Karemaker, L. M. Hageman, and D. J. van der Werf, “Circumstances surrounding aneurismal hemorrhage,” Surg. Neurol. 32, 266–272 (1989).
[Crossref] [PubMed]

Hanson, K. M.

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[Crossref]

Hardy, C. J.

S. E. Maier, C. J. Hardy, and F. A. Jolesz, “Brain and cerebrospinal fluid motion: real time quantification with M-mode MR imaging,” Radiology 193, 477–483 (1994).
[PubMed]

Hielscher, A. H.

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Medical Physics 26, 1698–1707 (1999).
[Crossref] [PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[Crossref]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Hintz, S. R.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

S. R. Hintz, W. F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

Hira, J.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–92 (1995).
[Crossref] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

Hirth, C.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

Hoshi, Y.

Y. Hoshi, N. Kobayashi, and M. Tamura, “Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model,” J. Appl. Physiol. 90, 1657–1662 (2001).
[PubMed]

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

M. Tamura, Y. Hoshi, and F. Okada, “Localized near-infrared spectroscopy and functional optical imaging of brain activity,” Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences. 352(1354), 737–42 (1997).
[Crossref]

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neuroscience Letters,  150, 5–8 (1993).
[Crossref] [PubMed]

Hueber, D.

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Huebert, D.

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

Ide, K.

F. Pott, J. J. Van Lieshout, K. Ide, P. Madsen, and N. H. Secher, “Middle cerebral artery blood velocity during Valsalva mameuver in the standing position,” J. Appl. Physiol. 88, 1545–1550 (2000).
[PubMed]

Itagaki, H.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
[Crossref]

Ito, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
[Crossref]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” J. Med. Phys. 22, 1997–2005 (1995).
[Crossref]

Jacques, S. L.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Jiang, H.

H. Jiang, K. D. Paulsen, and U. L. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[Crossref] [PubMed]

Jolesz, F. A.

S. E. Maier, C. J. Hardy, and F. A. Jolesz, “Brain and cerebrospinal fluid motion: real time quantification with M-mode MR imaging,” Radiology 193, 477–483 (1994).
[PubMed]

Karara, H. M.

H. M. Karara, Handbook of Non-topographic Photogrammetry (American Society of Photogrammetry, Falls Church, VA, 1989).

Karemaker, J. M.

W. I. Schievink, J. M. Karemaker, L. M. Hageman, and D. J. van der Werf, “Circumstances surrounding aneurismal hemorrhage,” Surg. Neurol. 32, 266–272 (1989).
[Crossref] [PubMed]

Kawaguchi, F.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000).
[Crossref] [PubMed]

Kennan, R.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
[Crossref]

Kermit, E. L.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

Kindt, G. W.

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics and intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

Kleinschmidt, A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
[Crossref]

Klose, A. D.

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Medical Physics 26, 1698–1707 (1999).
[Crossref] [PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[Crossref]

Kobayashi, N.

Y. Hoshi, N. Kobayashi, and M. Tamura, “Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model,” J. Appl. Physiol. 90, 1657–1662 (2001).
[PubMed]

Kofinas, A. D.

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Koizumi, H.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000).
[Crossref] [PubMed]

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
[Crossref]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” J. Med. Phys. 22, 1997–2005 (1995).
[Crossref]

Lam, A. M.

F. P. Tiecks, C. Douville, S. Byrd, A. M. Lam, and D. W. Newell, “Evaluation of impaired cerebral autoregulation by the Valsalva Maneuver,” Stroke 27, 1177–1182 (1996).
[Crossref] [PubMed]

F. P. Tiecks, A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell, “Effects of the Valsalva maneuver on cerebral circulation in healthy adults,” Stroke 26, 1386–1392 (1995).
[Crossref] [PubMed]

Lam, J.

B. F. Matta, J. Lam, and P. Smileswiski, “The effect of the Valsalva maneuver on cerebral hemodynamics: a near infrared spectroscopy study,” J. Neurosurgical Anesthesiology 8, 601 (1996).

Lasker, J.

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Liu, H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Löcker, M.

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Luo, H.

Madsen, P.

F. Pott, J. J. Van Lieshout, K. Ide, P. Madsen, and N. H. Secher, “Middle cerebral artery blood velocity during Valsalva mameuver in the standing position,” J. Appl. Physiol. 88, 1545–1550 (2000).
[PubMed]

Maier, S. E.

S. E. Maier, C. J. Hardy, and F. A. Jolesz, “Brain and cerebrospinal fluid motion: real time quantification with M-mode MR imaging,” Radiology 193, 477–483 (1994).
[PubMed]

Maki, A.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000).
[Crossref] [PubMed]

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
[Crossref]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” J. Med. Phys. 22, 1997–2005 (1995).
[Crossref]

Mandeville, J. B.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[Crossref] [PubMed]

Marota, J. J.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[Crossref] [PubMed]

Matta, B. F.

B. F. Matta, J. Lam, and P. Smileswiski, “The effect of the Valsalva maneuver on cerebral hemodynamics: a near infrared spectroscopy study,” J. Neurosurgical Anesthesiology 8, 601 (1996).

F. P. Tiecks, A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell, “Effects of the Valsalva maneuver on cerebral circulation in healthy adults,” Stroke 26, 1386–1392 (1995).
[Crossref] [PubMed]

Maulik, D.

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Mayanagi, Y.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000).
[Crossref] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” J. Med. Phys. 22, 1997–2005 (1995).
[Crossref]

McBride, T. O.

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissues,” in Biomedical Topical Meetings, OSA Technical digest (Optical Society of America, Washington DC, 2000), pp. 339–341.

McGillicuddy, J. E.

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics and intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

Merboldt, K.

A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
[Crossref]

Nair, R.

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Newell, D. W.

F. P. Tiecks, C. Douville, S. Byrd, A. M. Lam, and D. W. Newell, “Evaluation of impaired cerebral autoregulation by the Valsalva Maneuver,” Stroke 27, 1177–1182 (1996).
[Crossref] [PubMed]

F. P. Tiecks, A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell, “Effects of the Valsalva maneuver on cerebral circulation in healthy adults,” Stroke 26, 1386–1392 (1995).
[Crossref] [PubMed]

Obrig, H.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinnberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[Crossref] [PubMed]

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
[Crossref]

Oda, I.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

Oda, M.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

Ohta, K.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

Okada, F.

M. Tamura, Y. Hoshi, and F. Okada, “Localized near-infrared spectroscopy and functional optical imaging of brain activity,” Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences. 352(1354), 737–42 (1997).
[Crossref]

Osterberg, U. L.

H. Jiang, K. D. Paulsen, and U. L. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissues,” in Biomedical Topical Meetings, OSA Technical digest (Optical Society of America, Washington DC, 2000), pp. 339–341.

Panerai, R. B.

S. L. Dawson, R. B. Panerai, and J. F. Potter, “Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver,” J. Appl. Physiol. 86, 675–680 (1999).
[PubMed]

Pasciak, J. E.

J. H. Bramble, J. E. Pasciak, and J. Xu, “Parallel multilevel preconditioners,” Math. Comp. 55, 1–22 (1990).
[Crossref]

Paulsen, K. D.

H. Jiang, K. D. Paulsen, and U. L. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[Crossref] [PubMed]

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissues,” in Biomedical Topical Meetings, OSA Technical digest (Optical Society of America, Washington DC, 2000), pp. 339–341.

Pei, Y.

Pogue, B. W.

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissues,” in Biomedical Topical Meetings, OSA Technical digest (Optical Society of America, Washington DC, 2000), pp. 339–341.

Pott, F.

F. Pott, J. J. Van Lieshout, K. Ide, P. Madsen, and N. H. Secher, “Middle cerebral artery blood velocity during Valsalva mameuver in the standing position,” J. Appl. Physiol. 88, 1545–1550 (2000).
[PubMed]

Potter, J. F.

S. L. Dawson, R. B. Panerai, and J. F. Potter, “Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver,” J. Appl. Physiol. 86, 675–680 (1999).
[PubMed]

Raisis, J. E.

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics and intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

Ramirex, N.

Requardt, M.

A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
[Crossref]

Rinnberg, H.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinnberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[Crossref] [PubMed]

Rosenfeld, W.

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

Roy, R.

R. Roy and E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I Theory and formulation,” Opt. Express 4, 353–371 (1999). http://www.opticsexpress.org/oearchive/source/9268.htm
[Crossref] [PubMed]

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997).
[Crossref]

D.B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, and P. Van der zee, “Giving Reverse Differentiation a Helping Hand,” Optimization Methods and Software 8, 53–67 (1997).
[Crossref]

Schievink, W. I.

W. I. Schievink, J. M. Karemaker, L. M. Hageman, and D. J. van der Werf, “Circumstances surrounding aneurismal hemorrhage,” Surg. Neurol. 32, 266–272 (1989).
[Crossref] [PubMed]

Schmitz, C. H.

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A.Y. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirex, S. L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[Crossref]

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Schweiger, M.

S. R. Arridge and M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1998). http://www.opticsexpress.org/oearchive/source/10447.htm
[Crossref] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–92 (1995).
[Crossref] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

Secher, N. H.

F. Pott, J. J. Van Lieshout, K. Ide, P. Madsen, and N. H. Secher, “Middle cerebral artery blood velocity during Valsalva mameuver in the standing position,” J. Appl. Physiol. 88, 1545–1550 (2000).
[PubMed]

Sevick-Muraca, E. M.

R. Roy and E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I Theory and formulation,” Opt. Express 4, 353–371 (1999). http://www.opticsexpress.org/oearchive/source/9268.htm
[Crossref] [PubMed]

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Sharpey-Schafer, E. P.

E. P. Sharpey-Schafer and P. J. Taylor, “Absent circulatory reflexes in diabetic neuritis,” Lancet 1, 559–562 (1960).
[Crossref] [PubMed]

Smileswiski, P.

B. F. Matta, J. Lam, and P. Smileswiski, “The effect of the Valsalva maneuver on cerebral hemodynamics: a near infrared spectroscopy study,” J. Neurosurgical Anesthesiology 8, 601 (1996).

Soller, I.

Stankovic, M.

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

Stankovic, M. R.

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Steinbrink, J.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinnberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[Crossref] [PubMed]

Stevenson, D. K.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

S. R. Hintz, W. F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

Strangman, G.

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[Crossref] [PubMed]

Strebel, S.

F. P. Tiecks, A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell, “Effects of the Valsalva maneuver on cerebral circulation in healthy adults,” Stroke 26, 1386–1392 (1995).
[Crossref] [PubMed]

Stubblefield, P. G.

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

Tamura, M.

Y. Hoshi, N. Kobayashi, and M. Tamura, “Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model,” J. Appl. Physiol. 90, 1657–1662 (2001).
[PubMed]

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

M. Tamura, Y. Hoshi, and F. Okada, “Localized near-infrared spectroscopy and functional optical imaging of brain activity,” Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences. 352(1354), 737–42 (1997).
[Crossref]

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neuroscience Letters,  150, 5–8 (1993).
[Crossref] [PubMed]

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Taylor, P. J.

E. P. Sharpey-Schafer and P. J. Taylor, “Absent circulatory reflexes in diabetic neuritis,” Lancet 1, 559–562 (1960).
[Crossref] [PubMed]

Tiecks, F. P.

F. P. Tiecks, C. Douville, S. Byrd, A. M. Lam, and D. W. Newell, “Evaluation of impaired cerebral autoregulation by the Valsalva Maneuver,” Stroke 27, 1177–1182 (1996).
[Crossref] [PubMed]

F. P. Tiecks, A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell, “Effects of the Valsalva maneuver on cerebral circulation in healthy adults,” Stroke 26, 1386–1392 (1995).
[Crossref] [PubMed]

Tittel, F. K.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Toronov, V.

M. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Optics Express 6, 49–57 (2000), http://www.opticsexpress.org/oearchive/source/18957.htm
[Crossref] [PubMed]

Tromberg, B.

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

van der Werf, D. J.

W. I. Schievink, J. M. Karemaker, L. M. Hageman, and D. J. van der Werf, “Circumstances surrounding aneurismal hemorrhage,” Surg. Neurol. 32, 266–272 (1989).
[Crossref] [PubMed]

van der Zee, P.

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997).
[Crossref]

D.B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, and P. Van der zee, “Giving Reverse Differentiation a Helping Hand,” Optimization Methods and Software 8, 53–67 (1997).
[Crossref]

Van Houten, J. C.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

van Houten, J. P.

S. R. Hintz, W. F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

Van Lieshout, J. J.

F. Pott, J. J. Van Lieshout, K. Ide, P. Madsen, and N. H. Secher, “Middle cerebral artery blood velocity during Valsalva mameuver in the standing position,” J. Appl. Physiol. 88, 1545–1550 (2000).
[PubMed]

Varone, A.

G. Abdoulaev, A. Varone, and G. Zanetti, “An object oriented flow solver for the CRS4 virtual vascular project,” in Proc. Of the 3rd European Conf. on Numerical Mathematics and Advanced Applications, P. Neittaanmaki, T. Tiihonen, and P. Tarvainen (eds.) (World Scientific, Singapore), 407–415 (2000).

Villringer, A.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinnberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[Crossref] [PubMed]

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[Crossref] [PubMed]

A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
[Crossref]

Wabnitz, H.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinnberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[Crossref] [PubMed]

Wada, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

Watanabe, E.

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000).
[Crossref] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” J. Med. Phys. 22, 1997–2005 (1995).
[Crossref]

Wray, S.

S. Wray, M. Cope, and D. T. Delpy, “Characteristics of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim Biophys Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Xu, J.

J. H. Bramble, J. E. Pasciak, and J. Xu, “Parallel multilevel preconditioners,” Math. Comp. 55, 1–22 (1990).
[Crossref]

Yamada, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

Yamamoto, T.

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
[Crossref]

Yamashita, Y.

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000).
[Crossref] [PubMed]

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
[Crossref]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” J. Med. Phys. 22, 1997–2005 (1995).
[Crossref]

Zanetti, G.

G. Abdoulaev, A. Varone, and G. Zanetti, “An object oriented flow solver for the CRS4 virtual vascular project,” in Proc. Of the 3rd European Conf. on Numerical Mathematics and Advanced Applications, P. Neittaanmaki, T. Tiihonen, and P. Tarvainen (eds.) (World Scientific, Singapore), 407–415 (2000).

Zhong, S.

Advances in Engineering Software (1)

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997).
[Crossref]

Appl. Opt. (1)

Biochim Biophys Acta (1)

S. Wray, M. Cope, and D. T. Delpy, “Characteristics of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation,” Biochim Biophys Acta 933, 184–192 (1988).
[Crossref] [PubMed]

Cognitive Brain Research (1)

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and M. Tamura, “Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,” Cognitive Brain Research 9, 339–342 (2000).
[Crossref] [PubMed]

IEEE Trans. Med. Imag. (1)

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999).
[Crossref]

J. Appl. Physiol. (3)

Y. Hoshi, N. Kobayashi, and M. Tamura, “Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model,” J. Appl. Physiol. 90, 1657–1662 (2001).
[PubMed]

F. Pott, J. J. Van Lieshout, K. Ide, P. Madsen, and N. H. Secher, “Middle cerebral artery blood velocity during Valsalva mameuver in the standing position,” J. Appl. Physiol. 88, 1545–1550 (2000).
[PubMed]

S. L. Dawson, R. B. Panerai, and J. F. Potter, “Critical closing pressure explains cerebral hemodynamics during the Valsalva maneuver,” J. Appl. Physiol. 86, 675–680 (1999).
[PubMed]

J. Biomed. Opt. (1)

E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt. 5, 287–290 (2000).
[Crossref] [PubMed]

J. Cerebral Blood Flow and Metabolism (1)

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. Van Houten, E. L. Kermit, W. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow and Metabolism 20, 469–477 (2000).
[Crossref]

J. Med. Phys. (1)

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using non-invasive NIR topography,” J. Med. Phys. 22, 1997–2005 (1995).
[Crossref]

J. Neurosurgical Anesthesiology (1)

B. F. Matta, J. Lam, and P. Smileswiski, “The effect of the Valsalva maneuver on cerebral hemodynamics: a near infrared spectroscopy study,” J. Neurosurgical Anesthesiology 8, 601 (1996).

J. of Cerebral blood flow and metabolism (1)

A. Kleinschmidt, H. Obrig, M. Requardt, K. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near infrared spectroscopy,” J. of Cerebral blood flow and metabolism 16, 817–826 (1996).
[Crossref]

J. Perinat. Med. (1)

M. R. Stankovic, D. Maulik, W. Rosenfeld, P. G. Stubblefield, A. D. Kofinas, S. Drexler, R. Nair, M. A. Franceschini, D. Hueber, E. Gratton, and S. Fantini,, “Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets,” J. Perinat. Med. 27, 279–286 (1999).
[Crossref] [PubMed]

J. Surg. Res. (2)

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

J. E. Raisis, G. W. Kindt, J. E. McGillicuddy, and S. L. Giannotta, “The effects of primary elevation of cerebral venous pressure on cerebral hemodynamics and intracranial pressure,” J. Surg. Res. 26, 101–107 (1979).
[Crossref] [PubMed]

Journal of Biomedical Opt. (1)

H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Ito, H. Itagaki, and R. Kennan, “Higher-Order Brain Function Analysis by trans-cranial dynamic near-infrared spectroscopy imaging,” Journal of Biomedical Opt. 4, 403–413 (1999).
[Crossref]

Lancet (1)

E. P. Sharpey-Schafer and P. J. Taylor, “Absent circulatory reflexes in diabetic neuritis,” Lancet 1, 559–562 (1960).
[Crossref] [PubMed]

Math. Comp. (1)

J. H. Bramble, J. E. Pasciak, and J. Xu, “Parallel multilevel preconditioners,” Math. Comp. 55, 1–22 (1990).
[Crossref]

Med. Phys. (3)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element model for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–92 (1995).
[Crossref] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Medical Physics (1)

A. D. Klose and A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Medical Physics 26, 1698–1707 (1999).
[Crossref] [PubMed]

Neuroimage (1)

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001).
[Crossref] [PubMed]

Neuroscience Letters (1)

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neuroscience Letters,  150, 5–8 (1993).
[Crossref] [PubMed]

Opt. Express (3)

Optics Express (2)

M. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Optics Express 6, 49–57 (2000), http://www.opticsexpress.org/oearchive/source/18957.htm
[Crossref] [PubMed]

X. Cheng and D.A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Optics Express 4, 299–307 (1999), http://www.opticsexpress.org/oearchive/source/9108.htm
[Crossref] [PubMed]

Optimization Methods and Software (1)

D.B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, and P. Van der zee, “Giving Reverse Differentiation a Helping Hand,” Optimization Methods and Software 8, 53–67 (1997).
[Crossref]

Pediatr. Res. (1)

S. R. Hintz, W. F. Cheong, J. P. van Houten, D. K. Stevenson, and D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999).
[Crossref] [PubMed]

Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences. (1)

M. Tamura, Y. Hoshi, and F. Okada, “Localized near-infrared spectroscopy and functional optical imaging of brain activity,” Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences. 352(1354), 737–42 (1997).
[Crossref]

Phys. Med. Biol. (3)

S. Fantini, D. Huebert, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44, 1543–1563 (1999).
[Crossref] [PubMed]

H. Jiang, K. D. Paulsen, and U. L. Osterberg, “Optical image reconstruction using DC data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[Crossref] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinnberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[Crossref] [PubMed]

Psychonomic Bulletin and Review (1)

G. Gratton and M. Fabiani, “Dynamic brain imaging: Event-related optical signal (EROS) measures of the time course and localization of cognitive-related activity,” Psychonomic Bulletin and Review 5, 535–563 (1995).
[Crossref]

Radiology (1)

S. E. Maier, C. J. Hardy, and F. A. Jolesz, “Brain and cerebrospinal fluid motion: real time quantification with M-mode MR imaging,” Radiology 193, 477–483 (1994).
[PubMed]

Stroke (2)

F. P. Tiecks, A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell, “Effects of the Valsalva maneuver on cerebral circulation in healthy adults,” Stroke 26, 1386–1392 (1995).
[Crossref] [PubMed]

F. P. Tiecks, C. Douville, S. Byrd, A. M. Lam, and D. W. Newell, “Evaluation of impaired cerebral autoregulation by the Valsalva Maneuver,” Stroke 27, 1177–1182 (1996).
[Crossref] [PubMed]

Surg. Neurol. (1)

W. I. Schievink, J. M. Karemaker, L. M. Hageman, and D. J. van der Werf, “Circumstances surrounding aneurismal hemorrhage,” Surg. Neurol. 32, 266–272 (1989).
[Crossref] [PubMed]

Trends Neurosci. (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997).
[Crossref] [PubMed]

Other (8)

Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt.40 (2001) in press.
[Crossref]

T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissues,” in Biomedical Topical Meetings, OSA Technical digest (Optical Society of America, Washington DC, 2000), pp. 339–341.

G. Abdoulaev, A. Varone, and G. Zanetti, “An object oriented flow solver for the CRS4 virtual vascular project,” in Proc. Of the 3rd European Conf. on Numerical Mathematics and Advanced Applications, P. Neittaanmaki, T. Tiihonen, and P. Tarvainen (eds.) (World Scientific, Singapore), 407–415 (2000).

H. M. Karara, Handbook of Non-topographic Photogrammetry (American Society of Photogrammetry, Falls Church, VA, 1989).

E. F. Church, Elements of Photogrammetry (Syracuse University Press, New York, 1948).

G. Deng and W. Falg, “An evaluation of an off-the-shelf digital close-range photogrammetric software package,” Photogrammetric Engineering and Remote Sensing67, 227–233 (2001).

R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufman Publishers, 1987).

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of a silicon-photodiode-based instrument for fast functional optical tomography,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Proc. SPIE4250, 171–179 (2001).

Supplementary Material (3)

» Media 1: MPG (1012 KB)     
» Media 2: MPG (1001 KB)     
» Media 3: MPG (985 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Patient with distribution of markers on forehead with overlaid mesh; optodes (red) surface information (blue/green/red), the sources are located at positions 3,6,10, and 13.

Fig. 2.
Fig. 2.

Time series of the experimental protocol at 760nm: 3 epochs - consisting of a Valsalva maneuver followed by a rest period (between dashed black lines).

Figure 3.
Figure 3.

Time series for first Valsalva maneuver epoch for source 3 (flat red trace) at 760nm.

Fig. 4.
Fig. 4.

(1.6MB) Time-series reconstruction showing change in deoxyhemoglobin in units of mM during the Valsalva maneuver; Coronal view (upper left), Parasagittal view (upper right), Horizontal view (lower left), scale (lower right).

Fig. 5.
Fig. 5.

(1.6MB) Time-series reconstruction showing change in oxyhemoglobin in units of mM during the Valsalva maneuver; Coronal view (upper left), Parasagittal view (upper right), Horizontal view (lower left), scale (lower right).

Fig 6.
Fig 6.

(1.6MB) Time-series reconstruction showing change in blood volume as reflected by total hemoglobin in units of mM during the Valsalva maneuver; Coronal view (upper left), Parasagittal view (upper right), Horizontal view (lower left), scale (lower right).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

A i , j e = D φ i φ j + μ a φ i φ j d Ω e
Φ = s d ( M s , d P s , d ) 2 σ s , d 2 ,
Φ = s d [ ( M s , d pert ( t ) M s , d ref P s , d ( ξ 0 ) ) P s , d ( ξ n ) ] 2 ( M s , d pert ( t ) M s , d ref P s , d ( ξ 0 ) ) 2
Φ μ a r = 2 s , d ( ( φ s ( x d ) M s , d ) M s , d 2 · φ s ( x d ) μ a r ) .
φ s ( x r ) μ a r = P r T φ s μ a .
Φ μ a r = 2 s ( ( s ( φ s ( x r ) M s , d ) ( M s , d ) 2 P r T ) φ s μ a ) .
A φ s μ a = A μ a φ s
φ s μ a = A 1 A μ a φ s
Φ μ a r = 2 s ( d ( φ s ( x r ) M s , d ) ( M s , d ) 2 · P r T A 1 ) A μ a φ s .
( φ s * ) T d ( φ s ( x r ) M s , d ) ( M s , d ) 2 · P d T A 1
φ μ a r = 2 s ( φ s * ) T A μ a φ s .
Φ μ a r = 2 s el i , j A i , j e μ a r φ i φ j *
Φ μ a r = el i , j { 2 A i , j e μ a r s φ i φ j * } .
Φ μ a r = el i , j A i , j e μ a r { s 2 φ i φ j * } .
A i , j e μ a r = μ a r μ a r φ i φ j d Ω e
= μ a r k = 1 4 φ i φ j I ( μ a 1 , μ a 2 , μ a 3 , μ a 4 ) x = x k
I ( μ a 1 , μ a 2 , μ a 3 , μ a 4 ) = l = 1 4 μ a l φ l
So I μ a k = φ k and therefore : A i , j e μ a r = k = 1 4 i , j = 1 4 φ i φ j φ k
Δ μ a λ = ε Hb O 2 λ Δ [ Hb O 2 ] + ε Hb λ Δ [ Hb ]
Δ [ Hb ] meas = ε Hb O 2 λ 2 Δ μ a λ 1 ε Hb O 2 λ 1 Δ μ a λ 2 ε Hb λ 1 ε Hb O 2 λ 2 ε Hb λ 2 ε Hb O 2 λ 1 ,
Δ [ HbO 2 ] meas = ε Hb λ 1 Δ μ a λ 2 ε Hb λ 2 Δ μ a λ 1 ε Hb λ 1 ε HbO 2 λ 2 ε Hb λ 2 ε HbO 2 λ 1 .
x i = 1 2 n k = i n k = i + n x k .

Metrics