## Abstract

A Monte Carlo model was used to analyze the propagation of polarized light in
linearly birefringent turbid media, such as fibrous tissues. Linearly and
circularly polarized light sources were used to demonstrate the change of
polarizations in turbid media with different birefringent parameters. Videos of
spatially distributed polarization states of light backscattered from or
propagating in birefringent media are presented.

© 2001 Optical Society of America

Full Article |

PDF Article
### Equations (6)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${\mathbf{S}}_{n}^{\mathrm{bs}}(x\text{'},y\text{'};{\mu}_{s},{\mu}_{a},\delta )={[{\mu}_{s}\u2044\left({\mu}_{a}+{\mu}_{s}\right)]}^{n}\times \mathbf{R}\left({\varphi}_{n}\right)\mathbf{T}({\Delta}_{n},{\beta}_{n})\mathbf{M}\left({\Theta}_{n}\right)\mathbf{R}\left({\varphi}_{n-1n}\right)\dots $$
(2)
$$\times \mathbf{T}({\Delta}_{2},{\beta}_{2})\mathbf{M}\left({\Theta}_{2}\right)\mathbf{R}\left({\varphi}_{12}\right)\mathbf{T}({\Delta}_{1},{\beta}_{1})\mathbf{M}\left({\Theta}_{1}\right)\mathbf{R}\left({\varphi}_{1}\right)\mathbf{T}({\Delta}_{0},{\beta}_{0}){\mathbf{S}}_{0},$$
(3)
$$\mathbf{T}(\Delta ,\beta )=\left[\begin{array}{cccc}1& 0& 0& 0\\ 0& {C}_{4}{\mathrm{sin}}^{2}(\Delta \u20442)+{\mathrm{cos}}^{2}(\Delta \u20442)& {S}_{4}{\mathrm{sin}}^{2}(\Delta \u20442)& -{S}_{2}\mathrm{sin}\left(\Delta \right)\\ 0& {S}_{4}{\mathrm{sin}}^{2}(\Delta \u20442)& -{C}_{4}{\mathrm{sin}}^{2}(\Delta \u20442)+{\mathrm{cos}}^{2}(\Delta \u20442)& {C}_{2}\mathrm{sin}\left(\Delta \right)\\ 0& {S}_{2}\mathrm{sin}\left(\Delta \right)& -{C}_{2}\mathrm{sin}\left(\Delta \right)& \mathrm{cos}\left(\Delta \right)\end{array}\right],$$
(4)
$${C}_{2}=\mathrm{cos}\left(2\beta \right),{C}_{4}=\mathrm{cos}\left(4\beta \right),{S}_{2}=\mathrm{sin}\left(2\beta \right),{S}_{4}=\mathrm{sin}\left(4\beta \right).$$
(5)
$$\Delta =\left(\Delta n\right)\times 2\pi s\u2044\lambda ,$$
(6)
$$\Delta n={n}_{s}{n}_{f}/\sqrt{{\left({n}_{s}\mathrm{cos}\alpha \right)}^{2}+{\left({n}_{f}\mathrm{sin}\alpha \right)}^{2}}-{n}_{f}.$$