Abstract

A multimode interference coupler is proposed for pumping two erbium-doped waveguide amplifiers from a single 980 nm pump channel. Simulations predict that a device less than 2500 µm long can be made with signal and pump power losses of 0.28 dB and 0.63 dB respectively. The calculated 1 dB excess loss bandwidth of the device is 57 nm.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit

Chenglin Xu, Xiaobin Hong, and Wei-Ping Huang
Opt. Express 14(11) 4675-4686 (2006)

Lossless strip-to-slot waveguide transformer

Ning-Ning Feng, Rong Sun, Lionel C. Kimerling, and Jurgen Michel
Opt. Lett. 32(10) 1250-1252 (2007)

Integrated Mach-Zehnder-based 2 × 2 all-optical switch using nonlinear two-mode interference waveguide

Rahim Ghayour, Ahmad Naseri Taheri, and Mohammad Taghi Fathi
Appl. Opt. 47(5) 632-638 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
    [Crossref]
  2. K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett. 30, 856–857 (1994).
  3. Teem Photonics, www.teemphotonics.com.
  4. T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator,” Proc. 18 th Eur. Conf. Opt. Com., 907–910 (1992).
  5. F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges, “Integrated optic wavelength multiplexers on Lithium Niobate based on two-mode interference,” J. Lightwave Tech. 6, 946–952 (1988).
    [Crossref]
  6. G. Zhang, S. Honkanen, A. Tervonen, C. M. Wu, and I. Najafi, “Glass integrated optics circuits for 1.48/1.55 and 1.33/1.55 µm wavelength division multiplexing and 1/8 splitting,” Appl. Opt. 33, 3371–3374 (1994).
    [Crossref] [PubMed]
  7. T. Negami, H. Haga, and S. Yamamotto, “Guided-wave optical wavelength demultiplexer using an asymmetric Y junction,” Appl. Phys. Lett. 54, 1080–1082 (1989).
    [Crossref]
  8. L.B. Soldano and E.C.M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications”, J. of Lightwave Tech. 13, 615–627 (1995).
    [Crossref]
  9. C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of broadly-separated wavelengths using two-mode interference,” IEEE Phot. Tech. Lett. 7, 1037–1039 (1995).
    [Crossref]
  10. M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Phot. Tech. Lett. 7, 1180–1182 (1995).
    [Crossref]
  11. Clifford R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995), Chapter 8.
  12. Prometheus 4.2, Kymata Software, www.kymata.com.

1996 (1)

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
[Crossref]

1995 (3)

L.B. Soldano and E.C.M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications”, J. of Lightwave Tech. 13, 615–627 (1995).
[Crossref]

C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of broadly-separated wavelengths using two-mode interference,” IEEE Phot. Tech. Lett. 7, 1037–1039 (1995).
[Crossref]

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Phot. Tech. Lett. 7, 1180–1182 (1995).
[Crossref]

1994 (1)

1989 (1)

T. Negami, H. Haga, and S. Yamamotto, “Guided-wave optical wavelength demultiplexer using an asymmetric Y junction,” Appl. Phys. Lett. 54, 1080–1082 (1989).
[Crossref]

1988 (1)

F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges, “Integrated optic wavelength multiplexers on Lithium Niobate based on two-mode interference,” J. Lightwave Tech. 6, 946–952 (1988).
[Crossref]

Becker, P. C.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
[Crossref]

Broughton, J. N.

C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of broadly-separated wavelengths using two-mode interference,” IEEE Phot. Tech. Lett. 7, 1037–1039 (1995).
[Crossref]

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Phot. Tech. Lett. 7, 1180–1182 (1995).
[Crossref]

Bruce, A. J.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
[Crossref]

deBarros, M.R.X.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
[Crossref]

Ghosh, R. N.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
[Crossref]

Haga, H.

T. Negami, H. Haga, and S. Yamamotto, “Guided-wave optical wavelength demultiplexer using an asymmetric Y junction,” Appl. Phys. Lett. 54, 1080–1082 (1989).
[Crossref]

Hattori, K.

T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator,” Proc. 18 th Eur. Conf. Opt. Com., 907–910 (1992).

Hibino, Y.

T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator,” Proc. 18 th Eur. Conf. Opt. Com., 907–910 (1992).

Honkanen, S.

Horiguchi, M.

T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator,” Proc. 18 th Eur. Conf. Opt. Com., 907–910 (1992).

Janz, C. F.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Phot. Tech. Lett. 7, 1180–1182 (1995).
[Crossref]

C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of broadly-separated wavelengths using two-mode interference,” IEEE Phot. Tech. Lett. 7, 1037–1039 (1995).
[Crossref]

Kane, C. F.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
[Crossref]

Keyworth, B. P.

C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of broadly-separated wavelengths using two-mode interference,” IEEE Phot. Tech. Lett. 7, 1037–1039 (1995).
[Crossref]

Kitagawa, T.

T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator,” Proc. 18 th Eur. Conf. Opt. Com., 907–910 (1992).

MacDonald, R. I.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Phot. Tech. Lett. 7, 1180–1182 (1995).
[Crossref]

Mevenkamp, W.

F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges, “Integrated optic wavelength multiplexers on Lithium Niobate based on two-mode interference,” J. Lightwave Tech. 6, 946–952 (1988).
[Crossref]

Najafi, I.

Negami, T.

T. Negami, H. Haga, and S. Yamamotto, “Guided-wave optical wavelength demultiplexer using an asymmetric Y junction,” Appl. Phys. Lett. 54, 1080–1082 (1989).
[Crossref]

Neyer, A.

F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges, “Integrated optic wavelength multiplexers on Lithium Niobate based on two-mode interference,” J. Lightwave Tech. 6, 946–952 (1988).
[Crossref]

Nykolak, G.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
[Crossref]

Ohmori, Y.

T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator,” Proc. 18 th Eur. Conf. Opt. Com., 907–910 (1992).

Paiam, M. R.

C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of broadly-separated wavelengths using two-mode interference,” IEEE Phot. Tech. Lett. 7, 1037–1039 (1995).
[Crossref]

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Phot. Tech. Lett. 7, 1180–1182 (1995).
[Crossref]

Pennings, E.C.M.

L.B. Soldano and E.C.M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications”, J. of Lightwave Tech. 13, 615–627 (1995).
[Crossref]

Pollock, Clifford R.

Clifford R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995), Chapter 8.

Rottmann, F.

F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges, “Integrated optic wavelength multiplexers on Lithium Niobate based on two-mode interference,” J. Lightwave Tech. 6, 946–952 (1988).
[Crossref]

Shmulovich, J.

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
[Crossref]

Soldano, L.B.

L.B. Soldano and E.C.M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications”, J. of Lightwave Tech. 13, 615–627 (1995).
[Crossref]

Tervonen, A.

Voges, E.

F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges, “Integrated optic wavelength multiplexers on Lithium Niobate based on two-mode interference,” J. Lightwave Tech. 6, 946–952 (1988).
[Crossref]

Wu, C. M.

Yamamotto, S.

T. Negami, H. Haga, and S. Yamamotto, “Guided-wave optical wavelength demultiplexer using an asymmetric Y junction,” Appl. Phys. Lett. 54, 1080–1082 (1989).
[Crossref]

Zhang, G.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Negami, H. Haga, and S. Yamamotto, “Guided-wave optical wavelength demultiplexer using an asymmetric Y junction,” Appl. Phys. Lett. 54, 1080–1082 (1989).
[Crossref]

IEEE Phot. Tech. Lett. (3)

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Phot. Tech. Lett. 8, 518–520 (1996).
[Crossref]

C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of broadly-separated wavelengths using two-mode interference,” IEEE Phot. Tech. Lett. 7, 1037–1039 (1995).
[Crossref]

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Phot. Tech. Lett. 7, 1180–1182 (1995).
[Crossref]

J. Lightwave Tech. (1)

F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges, “Integrated optic wavelength multiplexers on Lithium Niobate based on two-mode interference,” J. Lightwave Tech. 6, 946–952 (1988).
[Crossref]

J. of Lightwave Tech. (1)

L.B. Soldano and E.C.M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications”, J. of Lightwave Tech. 13, 615–627 (1995).
[Crossref]

Other (5)

Clifford R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995), Chapter 8.

Prometheus 4.2, Kymata Software, www.kymata.com.

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler,” Electron. Lett. 30, 856–857 (1994).

Teem Photonics, www.teemphotonics.com.

T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator,” Proc. 18 th Eur. Conf. Opt. Com., 907–910 (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1
Fig.1

Field pattern near the input of a center-fed MMI coupler. Input waveguides for a signal of different wavelength can be introduced into a dead zone without disrupting the original field.

Fig. 2.
Fig. 2.

(a) Proposed structure if L<L′. (b) Proposed structure if L>L′. Note that the diagrams are not shown to scale.

Fig. 3.
Fig. 3.

Silica-based glass waveguide system. The shown values of refractive indices are for 980/1550 nm respectively.

Fig 4.
Fig 4.

Optimum device length at 1550 nm and 980 nm versus tapering length. The corresponding insertion loss as a function of tapering length is also shown

Fig 5.
Fig 5.

(a) The field pattern of the optimized device for one 1550 nm signal. (b) The field pattern of the optimized device for the 980 nm pump signal.

Fig. 6.
Fig. 6.

Sensitivity of excess loss to variations in wavelength, MMI width and MMI length.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ c = cos 1 n cl n co
Δ L / 2 W / 4 cot ( θ c ) .
n co = 1.5213 and n cl = 1.4592 at λ 1 , 2 = 1550 nm ,
n co = 1.5471 and n cl = 1.4859 at λ 0 = 980 nm .
L 3 L π
L p 2 × 3 4 L π = p 2 × 3 4 ( 1286.6 μ m ) = p ( 482.5 ) μ m , p = 1 , 2 , 3 ,
Δ L = L L 2482 2412 = 70 μ m .

Metrics