Abstract

A multimode interference coupler is proposed for pumping two erbium-doped waveguide amplifiers from a single 980 nm pump channel. Simulations predict that a device less than 2500 µm long can be made with signal and pump power losses of 0.28 dB and 0.63 dB respectively. The calculated 1 dB excess loss bandwidth of the device is 57 nm.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, "8-mW threshold Er 3+ -doped planar waveguide amplifier," IEEE Phot. Tech. Lett. 8, 518-520 (1996).
    [CrossRef]
  2. K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, "Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler," Electron. Lett. 30, 856-857 (1994).
  3. Teem Photonics, www.teemphotonics.com.
  4. T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, "Laser oscillation in Er-doped silica-based planar ring resonator," Proc. 18th Eur. Conf. Opt. Com. 907-910 (1992).
  5. F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges, "Integrated optic wavelength multiplexers on Lithium Niobate based on two-mode interference," J. Lightwave Tech. 6, 946-952 (1988).
    [CrossRef]
  6. G. Zhang, S. Honkanen, A. Tervonen, C. M. Wu, and I. Najafi, "Glass integrated optics circuits for 1.48/1.55 and 1.33/1.55 �m wavelength division multiplexing and 1/8 splitting," Appl. Opt. 33, 3371-3374 (1994).
    [CrossRef] [PubMed]
  7. T. Negami, H. Haga, and S. Yamamotto, "Guided-wave optical wavelength demultiplexer using an asymmetric Y junction," Appl. Phys. Lett. 54, 1080-1082 (1989).
    [CrossRef]
  8. L.B. Soldano and E.C.M. Pennings, "Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications," J. of Lightwave Tech. 13, 615-627 (1995).
    [CrossRef]
  9. C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, "Bent waveguide couplers for (de)multiplexing of broadly-separated wavelengths using two-mode interference," IEEE Phot. Tech. Lett. 7, 1037-1039 (1995).
    [CrossRef]
  10. M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference," IEEE Phot. Tech. Lett. 7, 1180-1182 (1995).
    [CrossRef]
  11. Clifford R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995), Chapter 8.
  12. Prometheus 4.2, Kymata Software, www.kymata.com.

Other (12)

R. N. Ghosh, J. Shmulovich, C. F. Kane, M.R.X. deBarros, G. Nykolak, A. J. Bruce, and P. C. Becker, "8-mW threshold Er 3+ -doped planar waveguide amplifier," IEEE Phot. Tech. Lett. 8, 518-520 (1996).
[CrossRef]

K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, "Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler," Electron. Lett. 30, 856-857 (1994).

Teem Photonics, www.teemphotonics.com.

T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, "Laser oscillation in Er-doped silica-based planar ring resonator," Proc. 18th Eur. Conf. Opt. Com. 907-910 (1992).

F. Rottmann, A. Neyer, W. Mevenkamp, and E. Voges, "Integrated optic wavelength multiplexers on Lithium Niobate based on two-mode interference," J. Lightwave Tech. 6, 946-952 (1988).
[CrossRef]

G. Zhang, S. Honkanen, A. Tervonen, C. M. Wu, and I. Najafi, "Glass integrated optics circuits for 1.48/1.55 and 1.33/1.55 �m wavelength division multiplexing and 1/8 splitting," Appl. Opt. 33, 3371-3374 (1994).
[CrossRef] [PubMed]

T. Negami, H. Haga, and S. Yamamotto, "Guided-wave optical wavelength demultiplexer using an asymmetric Y junction," Appl. Phys. Lett. 54, 1080-1082 (1989).
[CrossRef]

L.B. Soldano and E.C.M. Pennings, "Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications," J. of Lightwave Tech. 13, 615-627 (1995).
[CrossRef]

C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, "Bent waveguide couplers for (de)multiplexing of broadly-separated wavelengths using two-mode interference," IEEE Phot. Tech. Lett. 7, 1037-1039 (1995).
[CrossRef]

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference," IEEE Phot. Tech. Lett. 7, 1180-1182 (1995).
[CrossRef]

Clifford R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995), Chapter 8.

Prometheus 4.2, Kymata Software, www.kymata.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1
Fig.1

Field pattern near the input of a center-fed MMI coupler. Input waveguides for a signal of different wavelength can be introduced into a dead zone without disrupting the original field.

Fig. 2.
Fig. 2.

(a) Proposed structure if L<L′. (b) Proposed structure if L>L′. Note that the diagrams are not shown to scale.

Fig. 3.
Fig. 3.

Silica-based glass waveguide system. The shown values of refractive indices are for 980/1550 nm respectively.

Fig 4.
Fig 4.

Optimum device length at 1550 nm and 980 nm versus tapering length. The corresponding insertion loss as a function of tapering length is also shown

Fig 5.
Fig 5.

(a) The field pattern of the optimized device for one 1550 nm signal. (b) The field pattern of the optimized device for the 980 nm pump signal.

Fig. 6.
Fig. 6.

Sensitivity of excess loss to variations in wavelength, MMI width and MMI length.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ c = cos 1 n cl n co
Δ L / 2 W / 4 cot ( θ c ) .
n co = 1.5213 and n cl = 1.4592 at λ 1 , 2 = 1550 nm ,
n co = 1.5471 and n cl = 1.4859 at λ 0 = 980 nm .
L 3 L π
L p 2 × 3 4 L π = p 2 × 3 4 ( 1286.6 μ m ) = p ( 482.5 ) μ m , p = 1 , 2 , 3 ,
Δ L = L L 2482 2412 = 70 μ m .

Metrics