Abstract

The dielectric function spectra of low dielectric constant (low-k) materials have been determined using high-precision four-zone null spectroscopic ellipsometry, near-normal incidence reflection spectrometry and Fourier transform infrared transmission spectroscopy. The optical functions over a wide spectral range from 0.03t o 5.4 eV (230 nm to 40.5 µm wavelength region) have been evaluated for representative low-k materials used in the semiconductor industry for inter-layer dielectrics: (1) FLARE – organic spin-on polymer, and (2) HOSP – spin-on hybrid organic-siloxane polymer from the Honeywell Electronic Materials Company.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-W. Chung, J.-H. Shin, N.-H. Park, and J. W. Park, “Dielectric properties of hydrogen silsesquiox-ane films degraded by heat and plasma treatment,” Jpn. J. Appl. Phys., Part 1  38, 5214–5219 (1999).
    [Crossref]
  2. S.-W. Chung, S.-T. Kim, J.-H. Shin, J. K. Kim, and J. W. Park, “Comparative study of hydrido organo siloxane polymer and hydrogen silsesquioxane,” Jpn. J. Appl. Phys., Part 1  39, 5809–5815 (2000).
    [Crossref]
  3. J. J. Senkevich and S. B. Desu, “Poly(tetraflouro-p-xylylene), a low dielectric constant chemical vapor polymerized polymer,” Appl. Phys. Lett. 72, 258–260 (1998).
    [Crossref]
  4. N. Aoi, “Novel porous films having low dielectric constants synthesized by liquid phase silylation of spin-on glass sol for intermetal dielectrics,” Jpn. J. Appl. Phys., Part 1  36, 1355–1359 (1997).
    [Crossref]
  5. T. Kikkawa, T. Nagahara, and H. Matsuo, “Direct patterning of photosensitive low-dielectric-constant films using electron-beam lithography,” Appl. Phys. Lett. 78, 2557–2559 (2001).
    [Crossref]
  6. S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films,” J. Appl. Phys. 83, 2172–2178 (1998).
    [Crossref]
  7. K. Postava, T. Yamaguchi, and M. Horie, “Estimation of the dielectric properties of low-k materials using optical spectroscopy,” Appl. Phys. Lett. (2001) (to be published).
    [Crossref]
  8. I. Ohlídal and D. Franta, Ellipsometry of thin film systems, in: Progress in Optics ed. E. Wolf (North-Holand, Amsterdam, 2000), Vol. 41.
    [Crossref]
  9. K. Postava and T. Yamaguchi, “Optical functions of low-k materials for interlayer dielectrics,” J. Appl. Phys. 89, 2189–2193 (2001).
    [Crossref]
  10. K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
    [Crossref]
  11. K. Postava, M. Aoyama, and T. Yamaguchi, “Optical characterization of TiN/SiO2(1000 nm)/Si system by spectroscopic ellipsometry and reflectometry,” Appl. Surf. Sci. 175– 176, 270–275 (2001).
    [Crossref]
  12. K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 175– 176, 543–548 (2001).
    [Crossref]
  13. D. E. Aspens and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
    [Crossref]
  14. D. F. EdwardsSilicon (Si), in:, Handbook of Optical Constants of Solids, ed.E. D. Palik (Academic Press, New York1998).
  15. H. H. Willard, L. L. Merritt, J. A. Dean, and F. A. Settle, , Instrumental Methods of Analysis, 7th ed., Wadsworth Publishing Company, p. 287.
  16. H.-U. Gremlich, Infrared and Raman Spectroscopy, in: Ullmann’s Encyclopedia of Industrial Chemistry, Vol. B5, (Verlagsgesellschaft1994).
  17. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 and 2137 (1996).
    [Crossref]
  18. H. R. Philipp, Silicon Dioxide (SiO2) (Glass), in: Handbook of Optical Constants of Solids, ed. E. D. Palik (Academic Press, New York1998).
  19. G. Bader, P. V. Ashrit, F. E. Girouard, and Vo-Van Truong, “Reflection-transmission photoellip-sometry: theory and experiments,” Appl. Opt. 34, 1684–1691 (1995).
    [Crossref] [PubMed]
  20. I. Ohlídal, “Approximate formulas for the reflectance, transmittance, and scattering losses of nonabsorbing multilayer systems with randomly rough boundaries,” J. Opt. Soc. Am. A 10, 158–171 (1993).
    [Crossref]

2001 (4)

T. Kikkawa, T. Nagahara, and H. Matsuo, “Direct patterning of photosensitive low-dielectric-constant films using electron-beam lithography,” Appl. Phys. Lett. 78, 2557–2559 (2001).
[Crossref]

K. Postava and T. Yamaguchi, “Optical functions of low-k materials for interlayer dielectrics,” J. Appl. Phys. 89, 2189–2193 (2001).
[Crossref]

K. Postava, M. Aoyama, and T. Yamaguchi, “Optical characterization of TiN/SiO2(1000 nm)/Si system by spectroscopic ellipsometry and reflectometry,” Appl. Surf. Sci. 175– 176, 270–275 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 175– 176, 543–548 (2001).
[Crossref]

2000 (2)

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
[Crossref]

S.-W. Chung, S.-T. Kim, J.-H. Shin, J. K. Kim, and J. W. Park, “Comparative study of hydrido organo siloxane polymer and hydrogen silsesquioxane,” Jpn. J. Appl. Phys., Part 1  39, 5809–5815 (2000).
[Crossref]

1999 (1)

S.-W. Chung, J.-H. Shin, N.-H. Park, and J. W. Park, “Dielectric properties of hydrogen silsesquiox-ane films degraded by heat and plasma treatment,” Jpn. J. Appl. Phys., Part 1  38, 5214–5219 (1999).
[Crossref]

1998 (2)

J. J. Senkevich and S. B. Desu, “Poly(tetraflouro-p-xylylene), a low dielectric constant chemical vapor polymerized polymer,” Appl. Phys. Lett. 72, 258–260 (1998).
[Crossref]

S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films,” J. Appl. Phys. 83, 2172–2178 (1998).
[Crossref]

1997 (1)

N. Aoi, “Novel porous films having low dielectric constants synthesized by liquid phase silylation of spin-on glass sol for intermetal dielectrics,” Jpn. J. Appl. Phys., Part 1  36, 1355–1359 (1997).
[Crossref]

1996 (1)

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 and 2137 (1996).
[Crossref]

1995 (1)

1993 (1)

1983 (1)

D. E. Aspens and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Aoi, N.

N. Aoi, “Novel porous films having low dielectric constants synthesized by liquid phase silylation of spin-on glass sol for intermetal dielectrics,” Jpn. J. Appl. Phys., Part 1  36, 1355–1359 (1997).
[Crossref]

Aoyama, M.

K. Postava, M. Aoyama, and T. Yamaguchi, “Optical characterization of TiN/SiO2(1000 nm)/Si system by spectroscopic ellipsometry and reflectometry,” Appl. Surf. Sci. 175– 176, 270–275 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 175– 176, 543–548 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
[Crossref]

Ashrit, P. V.

Aspens, D. E.

D. E. Aspens and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Aydil, E. S.

S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films,” J. Appl. Phys. 83, 2172–2178 (1998).
[Crossref]

Bader, G.

Chung, S.-W.

S.-W. Chung, S.-T. Kim, J.-H. Shin, J. K. Kim, and J. W. Park, “Comparative study of hydrido organo siloxane polymer and hydrogen silsesquioxane,” Jpn. J. Appl. Phys., Part 1  39, 5809–5815 (2000).
[Crossref]

S.-W. Chung, J.-H. Shin, N.-H. Park, and J. W. Park, “Dielectric properties of hydrogen silsesquiox-ane films degraded by heat and plasma treatment,” Jpn. J. Appl. Phys., Part 1  38, 5214–5219 (1999).
[Crossref]

Dean, J. A.

H. H. Willard, L. L. Merritt, J. A. Dean, and F. A. Settle, , Instrumental Methods of Analysis, 7th ed., Wadsworth Publishing Company, p. 287.

Desu, S. B.

J. J. Senkevich and S. B. Desu, “Poly(tetraflouro-p-xylylene), a low dielectric constant chemical vapor polymerized polymer,” Appl. Phys. Lett. 72, 258–260 (1998).
[Crossref]

Edwards, D. F.

D. F. EdwardsSilicon (Si), in:, Handbook of Optical Constants of Solids, ed.E. D. Palik (Academic Press, New York1998).

Franta, D.

I. Ohlídal and D. Franta, Ellipsometry of thin film systems, in: Progress in Optics ed. E. Wolf (North-Holand, Amsterdam, 2000), Vol. 41.
[Crossref]

Girouard, F. E.

Gremlich, H.-U.

H.-U. Gremlich, Infrared and Raman Spectroscopy, in: Ullmann’s Encyclopedia of Industrial Chemistry, Vol. B5, (Verlagsgesellschaft1994).

Han, S. M.

S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films,” J. Appl. Phys. 83, 2172–2178 (1998).
[Crossref]

Horie, M.

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
[Crossref]

K. Postava, T. Yamaguchi, and M. Horie, “Estimation of the dielectric properties of low-k materials using optical spectroscopy,” Appl. Phys. Lett. (2001) (to be published).
[Crossref]

Igasaki, Y.

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 175– 176, 543–548 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
[Crossref]

Ino, Ch.

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
[Crossref]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 and 2137 (1996).
[Crossref]

Kikkawa, T.

T. Kikkawa, T. Nagahara, and H. Matsuo, “Direct patterning of photosensitive low-dielectric-constant films using electron-beam lithography,” Appl. Phys. Lett. 78, 2557–2559 (2001).
[Crossref]

Kim, J. K.

S.-W. Chung, S.-T. Kim, J.-H. Shin, J. K. Kim, and J. W. Park, “Comparative study of hydrido organo siloxane polymer and hydrogen silsesquioxane,” Jpn. J. Appl. Phys., Part 1  39, 5809–5815 (2000).
[Crossref]

Kim, S.-T.

S.-W. Chung, S.-T. Kim, J.-H. Shin, J. K. Kim, and J. W. Park, “Comparative study of hydrido organo siloxane polymer and hydrogen silsesquioxane,” Jpn. J. Appl. Phys., Part 1  39, 5809–5815 (2000).
[Crossref]

Matsuo, H.

T. Kikkawa, T. Nagahara, and H. Matsuo, “Direct patterning of photosensitive low-dielectric-constant films using electron-beam lithography,” Appl. Phys. Lett. 78, 2557–2559 (2001).
[Crossref]

Merritt, L. L.

H. H. Willard, L. L. Merritt, J. A. Dean, and F. A. Settle, , Instrumental Methods of Analysis, 7th ed., Wadsworth Publishing Company, p. 287.

Modine, F. A.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 and 2137 (1996).
[Crossref]

Murakami, K.

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 175– 176, 543–548 (2001).
[Crossref]

Nagahara, T.

T. Kikkawa, T. Nagahara, and H. Matsuo, “Direct patterning of photosensitive low-dielectric-constant films using electron-beam lithography,” Appl. Phys. Lett. 78, 2557–2559 (2001).
[Crossref]

Ohlídal, I.

Park, J. W.

S.-W. Chung, S.-T. Kim, J.-H. Shin, J. K. Kim, and J. W. Park, “Comparative study of hydrido organo siloxane polymer and hydrogen silsesquioxane,” Jpn. J. Appl. Phys., Part 1  39, 5809–5815 (2000).
[Crossref]

S.-W. Chung, J.-H. Shin, N.-H. Park, and J. W. Park, “Dielectric properties of hydrogen silsesquiox-ane films degraded by heat and plasma treatment,” Jpn. J. Appl. Phys., Part 1  38, 5214–5219 (1999).
[Crossref]

Park, N.-H.

S.-W. Chung, J.-H. Shin, N.-H. Park, and J. W. Park, “Dielectric properties of hydrogen silsesquiox-ane films degraded by heat and plasma treatment,” Jpn. J. Appl. Phys., Part 1  38, 5214–5219 (1999).
[Crossref]

Philipp, H. R.

H. R. Philipp, Silicon Dioxide (SiO2) (Glass), in: Handbook of Optical Constants of Solids, ed. E. D. Palik (Academic Press, New York1998).

Postava, K.

K. Postava and T. Yamaguchi, “Optical functions of low-k materials for interlayer dielectrics,” J. Appl. Phys. 89, 2189–2193 (2001).
[Crossref]

K. Postava, M. Aoyama, and T. Yamaguchi, “Optical characterization of TiN/SiO2(1000 nm)/Si system by spectroscopic ellipsometry and reflectometry,” Appl. Surf. Sci. 175– 176, 270–275 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 175– 176, 543–548 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
[Crossref]

K. Postava, T. Yamaguchi, and M. Horie, “Estimation of the dielectric properties of low-k materials using optical spectroscopy,” Appl. Phys. Lett. (2001) (to be published).
[Crossref]

Senkevich, J. J.

J. J. Senkevich and S. B. Desu, “Poly(tetraflouro-p-xylylene), a low dielectric constant chemical vapor polymerized polymer,” Appl. Phys. Lett. 72, 258–260 (1998).
[Crossref]

Settle, F. A.

H. H. Willard, L. L. Merritt, J. A. Dean, and F. A. Settle, , Instrumental Methods of Analysis, 7th ed., Wadsworth Publishing Company, p. 287.

Shin, J.-H.

S.-W. Chung, S.-T. Kim, J.-H. Shin, J. K. Kim, and J. W. Park, “Comparative study of hydrido organo siloxane polymer and hydrogen silsesquioxane,” Jpn. J. Appl. Phys., Part 1  39, 5809–5815 (2000).
[Crossref]

S.-W. Chung, J.-H. Shin, N.-H. Park, and J. W. Park, “Dielectric properties of hydrogen silsesquiox-ane films degraded by heat and plasma treatment,” Jpn. J. Appl. Phys., Part 1  38, 5214–5219 (1999).
[Crossref]

Studna, A. A.

D. E. Aspens and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Sueki, H.

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 175– 176, 543–548 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
[Crossref]

Truong, Vo-Van

Willard, H. H.

H. H. Willard, L. L. Merritt, J. A. Dean, and F. A. Settle, , Instrumental Methods of Analysis, 7th ed., Wadsworth Publishing Company, p. 287.

Yamaguchi, T.

K. Postava and T. Yamaguchi, “Optical functions of low-k materials for interlayer dielectrics,” J. Appl. Phys. 89, 2189–2193 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 175– 176, 543–548 (2001).
[Crossref]

K. Postava, M. Aoyama, and T. Yamaguchi, “Optical characterization of TiN/SiO2(1000 nm)/Si system by spectroscopic ellipsometry and reflectometry,” Appl. Surf. Sci. 175– 176, 270–275 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
[Crossref]

K. Postava, T. Yamaguchi, and M. Horie, “Estimation of the dielectric properties of low-k materials using optical spectroscopy,” Appl. Phys. Lett. (2001) (to be published).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. J. Senkevich and S. B. Desu, “Poly(tetraflouro-p-xylylene), a low dielectric constant chemical vapor polymerized polymer,” Appl. Phys. Lett. 72, 258–260 (1998).
[Crossref]

T. Kikkawa, T. Nagahara, and H. Matsuo, “Direct patterning of photosensitive low-dielectric-constant films using electron-beam lithography,” Appl. Phys. Lett. 78, 2557–2559 (2001).
[Crossref]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 and 2137 (1996).
[Crossref]

Appl. Surf. Sci. (2)

K. Postava, M. Aoyama, and T. Yamaguchi, “Optical characterization of TiN/SiO2(1000 nm)/Si system by spectroscopic ellipsometry and reflectometry,” Appl. Surf. Sci. 175– 176, 270–275 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami, and Y. Igasaki, “Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 175– 176, 543–548 (2001).
[Crossref]

J. Appl. Phys. (3)

K. Postava and T. Yamaguchi, “Optical functions of low-k materials for interlayer dielectrics,” J. Appl. Phys. 89, 2189–2193 (2001).
[Crossref]

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie, “Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate,” J. Appl. Phys. 87, 7820–7824(2000).
[Crossref]

S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films,” J. Appl. Phys. 83, 2172–2178 (1998).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (3)

N. Aoi, “Novel porous films having low dielectric constants synthesized by liquid phase silylation of spin-on glass sol for intermetal dielectrics,” Jpn. J. Appl. Phys., Part 1  36, 1355–1359 (1997).
[Crossref]

S.-W. Chung, J.-H. Shin, N.-H. Park, and J. W. Park, “Dielectric properties of hydrogen silsesquiox-ane films degraded by heat and plasma treatment,” Jpn. J. Appl. Phys., Part 1  38, 5214–5219 (1999).
[Crossref]

S.-W. Chung, S.-T. Kim, J.-H. Shin, J. K. Kim, and J. W. Park, “Comparative study of hydrido organo siloxane polymer and hydrogen silsesquioxane,” Jpn. J. Appl. Phys., Part 1  39, 5809–5815 (2000).
[Crossref]

Phys. Rev. B (1)

D. E. Aspens and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Other (6)

D. F. EdwardsSilicon (Si), in:, Handbook of Optical Constants of Solids, ed.E. D. Palik (Academic Press, New York1998).

H. H. Willard, L. L. Merritt, J. A. Dean, and F. A. Settle, , Instrumental Methods of Analysis, 7th ed., Wadsworth Publishing Company, p. 287.

H.-U. Gremlich, Infrared and Raman Spectroscopy, in: Ullmann’s Encyclopedia of Industrial Chemistry, Vol. B5, (Verlagsgesellschaft1994).

H. R. Philipp, Silicon Dioxide (SiO2) (Glass), in: Handbook of Optical Constants of Solids, ed. E. D. Palik (Academic Press, New York1998).

K. Postava, T. Yamaguchi, and M. Horie, “Estimation of the dielectric properties of low-k materials using optical spectroscopy,” Appl. Phys. Lett. (2001) (to be published).
[Crossref]

I. Ohlídal and D. Franta, Ellipsometry of thin film systems, in: Progress in Optics ed. E. Wolf (North-Holand, Amsterdam, 2000), Vol. 41.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Spectroellipsometric data at the incidence angle of 80° (a) and near-normal incidence reflectivity spectra (b) of FLARE layer. Measured data (circles, squares) are compared with the model (solid line).

Fig. 2.
Fig. 2.

Optical functions of FLARE in visible, near-infrared and near-ultraviolet range. Real part ε 1 and imaginary part ε 2 of the dielectric function are represented by solid and dashed lines.

Fig. 3.
Fig. 3.

Normal incidence relative transmission spectra of FLARE layer. Measured data (circles) are compared with the model (solid line).

Fig. 4.
Fig. 4.

Optical functions of FLARE in infrared spectral range.

Fig. 5.
Fig. 5.

Spectroellipsometric data at the incidence angle of 70° (a) and near-normal incidence reflectivity spectra (b) of HOSP layer. Measured ellipsometric angles ψ (circles) and Δ (squares) are compared with the model (solid line). Measured reflectivity data (circles) are compared with the model based on Tauc-Lorentz (solid line) and Sellmeier parameterization (dashed line), respectively.

Fig. 6.
Fig. 6.

Refractive index spectrum of HOSP (solid line) is compared with SiO2 tabulated values (dashed line).

Fig. 7.
Fig. 7.

Normal incidence relative transmission spectra of HOSP layer. Measured data (circles) are compared with the model (solid line).

Fig. 8.
Fig. 8.

Optical functions of HOSP in infrared spectral range.

Fig. 9.
Fig. 9.

Influence of incoherent reflections in the thick silicon substrate on the absolute (a) and relative (b) transmittance. The model including the incoherent reflections (solid lines) is compared with a simple transmission simulation neglecting this effect (dashed lines).

Tables (3)

Tables Icon

Table 1. Bake plate and cure conditions for FLARE and HOSP

Tables Icon

Table 2. Results of fit for the FLARE layer.

Tables Icon

Table 3. Results of fit for the HOSP layer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε ( E ) = ε 1 + AE 1 2 E 1 2 E 2 + n A n E 0 n 2 E 0 n 2 E 2 + i Γ n E 0 n E ,
ε ( 2 ) ( E ) = AE 0 C ( E E g ) 2 ( E 2 E 0 2 ) 2 + C 2 E 2 1 E [ E > E g ]
= 0 [ E E g ]
T j = t j ( 01 ) 2 t j ( 12 ) 2 e 2 𝕴 ( k z ) d 1 r j ( 10 ) 2 r j ( 12 ) 2 e 4 𝕴 ( k z ) d , j = s , p ,

Metrics