Abstract

In this report, we present a method for reducing the inter–coefficient crosstalk problem in optical tomography. The method described is an extension of a previously reported normalized difference method that evaluates relative detector values, and employs a weight matrix scaling technique together with a constrained CGD method for image reconstruction. Results from numerical and experimental studies using DC measurement data demonstrate that the approach can effectively isolate absorption and scattering heterogeneities, even for complex combinations of perturbations in optical properties. The significance of these results in light of recent theoretical findings is discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.O. McBride, B. W. Pogue, U.L. Österberg, and K.D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissue,” in Biomedical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), pp. 339–341.
  2. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
    [Crossref]
  3. J. C. Hebden, S. R. Arridge, and M. Schweiger, “Investigation of alterative data types for time-resolved optical tomography,” Trends in Optics and Photonics vol. 21, Advances in Optical Imaging and Photon Migration, James G. Fujimoto and Michael S. Patterson, eds. (Optical Society of America, Washington, DC1998), pp 162–167.
  4. Y. Pei, H. L. Graber, and R L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt., 2001, in press.
    [Crossref]
  5. Y. Pei, Optical Tomographic Imaging Using the Finite Element Method, Ph. D. Thesis (1999), Polytechnic University.
  6. Y. Pei, F.-B. Lin, and R. L. Barbour, “Model-based imaging of scattering media using relative detector values,” presented at 1999 OSA Annual Meeting & Exhibit: Optics in High-Tech Industries (Santa Clara, CA, September 26–30).
  7. J. Chang, H.L. Graber, R.L. Barbour, and R. Aronson, “Recovery of optical cross-section perturbations in dense-scattering media by transport-theory-based imaging operators and steady-state simulated data,” Appl. Opt. 35, 3963–3978 (1996)
    [Crossref] [PubMed]
  8. P.E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York (1981).
  9. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 14, 262–266 (1997).
  10. C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of silicon photodiode (SiPD) based instrument for fast function optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).
  11. S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.
  12. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical Properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.,  Vol. 12, 510–519 (1992).
    [Crossref]
  13. H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
    [Crossref]
  14. R. L. Barbour, H.L. Graber, Y. Pei, S. Zhong, and C.H. Schmitz, “Optical tomographic imaging of dynamic features of dense scattering media,” J. Opt. Soc. Am. A, in press (2001).
    [Crossref]
  15. H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by dynamic optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).
  16. G. Landis, S. Blattman, T. Panetta, C. H. Schmitz, H. L. Graber, Y. Pei, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE4250, San Jose, CA, in press, (2001).
  17. N. Iftimia and H. Jiang, “Quantitative optical image reconstruction of turbid media by use of direct-current measurements,” Appl. Opt. 39, 5256–5261, (2000).
    [Crossref]
  18. Y. Xu, N. Iftimia, H. Jiang, L. Key, and M. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001).
    [Crossref] [PubMed]
  19. B.J. Hoenders, “Existence of invisible nonscattering objects and nonradiating sources,” J. Opt. Soc. Am. A 14, 262–266, (1997).
    [Crossref]
  20. A.H. Hielscher, R.E. Alcouffe, and R.L. Barbour, ‘Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).
    [Crossref] [PubMed]

2001 (1)

2000 (1)

1999 (1)

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[Crossref]

1998 (2)

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
[Crossref]

A.H. Hielscher, R.E. Alcouffe, and R.L. Barbour, ‘Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).
[Crossref] [PubMed]

1997 (2)

1996 (2)

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

J. Chang, H.L. Graber, R.L. Barbour, and R. Aronson, “Recovery of optical cross-section perturbations in dense-scattering media by transport-theory-based imaging operators and steady-state simulated data,” Appl. Opt. 35, 3963–3978 (1996)
[Crossref] [PubMed]

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical Properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.,  Vol. 12, 510–519 (1992).
[Crossref]

Alcouffe, R.E.

A.H. Hielscher, R.E. Alcouffe, and R.L. Barbour, ‘Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).
[Crossref] [PubMed]

Aronson, R.

Arridge, S. R.

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[Crossref]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
[Crossref]

J. C. Hebden, S. R. Arridge, and M. Schweiger, “Investigation of alterative data types for time-resolved optical tomography,” Trends in Optics and Photonics vol. 21, Advances in Optical Imaging and Photon Migration, James G. Fujimoto and Michael S. Patterson, eds. (Optical Society of America, Washington, DC1998), pp 162–167.

Barbour, R L.

Y. Pei, H. L. Graber, and R L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt., 2001, in press.
[Crossref]

Barbour, R. L.

G. Landis, S. Blattman, T. Panetta, C. H. Schmitz, H. L. Graber, Y. Pei, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Y. Pei, F.-B. Lin, and R. L. Barbour, “Model-based imaging of scattering media using relative detector values,” presented at 1999 OSA Annual Meeting & Exhibit: Optics in High-Tech Industries (Santa Clara, CA, September 26–30).

R. L. Barbour, H.L. Graber, Y. Pei, S. Zhong, and C.H. Schmitz, “Optical tomographic imaging of dynamic features of dense scattering media,” J. Opt. Soc. Am. A, in press (2001).
[Crossref]

H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by dynamic optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of silicon photodiode (SiPD) based instrument for fast function optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Barbour, R.L.

A.H. Hielscher, R.E. Alcouffe, and R.L. Barbour, ‘Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).
[Crossref] [PubMed]

J. Chang, H.L. Graber, R.L. Barbour, and R. Aronson, “Recovery of optical cross-section perturbations in dense-scattering media by transport-theory-based imaging operators and steady-state simulated data,” Appl. Opt. 35, 3963–3978 (1996)
[Crossref] [PubMed]

Blattman, S.

G. Landis, S. Blattman, T. Panetta, C. H. Schmitz, H. L. Graber, Y. Pei, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Bolster, M.

Chang, J.

Corngold, N.

Dehghani, H.

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[Crossref]

Delpy, D. T.

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[Crossref]

Erdl, H.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

Fantini, S.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical Properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.,  Vol. 12, 510–519 (1992).
[Crossref]

Franceschini, M.A.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

Gaida, G.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

Gill, P.E.

P.E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York (1981).

Graber, H. L.

Y. Pei, H. L. Graber, and R L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt., 2001, in press.
[Crossref]

G. Landis, S. Blattman, T. Panetta, C. H. Schmitz, H. L. Graber, Y. Pei, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE4250, San Jose, CA, in press, (2001).

H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by dynamic optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Graber, H.L.

J. Chang, H.L. Graber, R.L. Barbour, and R. Aronson, “Recovery of optical cross-section perturbations in dense-scattering media by transport-theory-based imaging operators and steady-state simulated data,” Appl. Opt. 35, 3963–3978 (1996)
[Crossref] [PubMed]

R. L. Barbour, H.L. Graber, Y. Pei, S. Zhong, and C.H. Schmitz, “Optical tomographic imaging of dynamic features of dense scattering media,” J. Opt. Soc. Am. A, in press (2001).
[Crossref]

Gratton, E.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

Hebden, J. C.

J. C. Hebden, S. R. Arridge, and M. Schweiger, “Investigation of alterative data types for time-resolved optical tomography,” Trends in Optics and Photonics vol. 21, Advances in Optical Imaging and Photon Migration, James G. Fujimoto and Michael S. Patterson, eds. (Optical Society of America, Washington, DC1998), pp 162–167.

Hielscher, A. H.

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of silicon photodiode (SiPD) based instrument for fast function optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Hielscher, A.H.

A.H. Hielscher, R.E. Alcouffe, and R.L. Barbour, ‘Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).
[Crossref] [PubMed]

Hoenders, B.J.

Iftimia, N.

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical Properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.,  Vol. 12, 510–519 (1992).
[Crossref]

Jess, H.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

Jiang, H.

Kaschke, M.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

Key, L.

Landis, G.

G. Landis, S. Blattman, T. Panetta, C. H. Schmitz, H. L. Graber, Y. Pei, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Lasker, J.

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of silicon photodiode (SiPD) based instrument for fast function optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Lin, F.-B.

Y. Pei, F.-B. Lin, and R. L. Barbour, “Model-based imaging of scattering media using relative detector values,” presented at 1999 OSA Annual Meeting & Exhibit: Optics in High-Tech Industries (Santa Clara, CA, September 26–30).

Lionheart, W. R. B.

Löcker, M.

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of silicon photodiode (SiPD) based instrument for fast function optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Mantulin, W.W.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

McBride, T.O.

T.O. McBride, B. W. Pogue, U.L. Österberg, and K.D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissue,” in Biomedical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), pp. 339–341.

Moesta, K.T.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

Murray, W.

P.E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York (1981).

Österberg, U.L.

T.O. McBride, B. W. Pogue, U.L. Österberg, and K.D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissue,” in Biomedical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), pp. 339–341.

Panetta, T.

G. Landis, S. Blattman, T. Panetta, C. H. Schmitz, H. L. Graber, Y. Pei, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Paulsen, K.D.

T.O. McBride, B. W. Pogue, U.L. Österberg, and K.D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissue,” in Biomedical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), pp. 339–341.

Pei, Y.

Y. Pei, H. L. Graber, and R L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt., 2001, in press.
[Crossref]

Y. Pei, Optical Tomographic Imaging Using the Finite Element Method, Ph. D. Thesis (1999), Polytechnic University.

Y. Pei, F.-B. Lin, and R. L. Barbour, “Model-based imaging of scattering media using relative detector values,” presented at 1999 OSA Annual Meeting & Exhibit: Optics in High-Tech Industries (Santa Clara, CA, September 26–30).

G. Landis, S. Blattman, T. Panetta, C. H. Schmitz, H. L. Graber, Y. Pei, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE4250, San Jose, CA, in press, (2001).

H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by dynamic optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

R. L. Barbour, H.L. Graber, Y. Pei, S. Zhong, and C.H. Schmitz, “Optical tomographic imaging of dynamic features of dense scattering media,” J. Opt. Soc. Am. A, in press (2001).
[Crossref]

Pogue, B. W.

T.O. McBride, B. W. Pogue, U.L. Österberg, and K.D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissue,” in Biomedical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), pp. 339–341.

Schlag, P.M.

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

Schmitz, C. H.

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of silicon photodiode (SiPD) based instrument for fast function optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

G. Landis, S. Blattman, T. Panetta, C. H. Schmitz, H. L. Graber, Y. Pei, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE4250, San Jose, CA, in press, (2001).

Schmitz, C.H.

R. L. Barbour, H.L. Graber, Y. Pei, S. Zhong, and C.H. Schmitz, “Optical tomographic imaging of dynamic features of dense scattering media,” J. Opt. Soc. Am. A, in press (2001).
[Crossref]

Schweiger, M.

J. C. Hebden, S. R. Arridge, and M. Schweiger, “Investigation of alterative data types for time-resolved optical tomography,” Trends in Optics and Photonics vol. 21, Advances in Optical Imaging and Photon Migration, James G. Fujimoto and Michael S. Patterson, eds. (Optical Society of America, Washington, DC1998), pp 162–167.

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical Properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.,  Vol. 12, 510–519 (1992).
[Crossref]

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical Properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.,  Vol. 12, 510–519 (1992).
[Crossref]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical Properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.,  Vol. 12, 510–519 (1992).
[Crossref]

Wright, M. H.

P.E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York (1981).

Xu, Y.

Zhong, S.

R. L. Barbour, H.L. Graber, Y. Pei, S. Zhong, and C.H. Schmitz, “Optical tomographic imaging of dynamic features of dense scattering media,” J. Opt. Soc. Am. A, in press (2001).
[Crossref]

Appl. Opt. (2)

in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration (1)

S. Fantini, M.A. Franceschini, G. Gaida, H. Jess, H. Erdl, W.W. Mantulin, E. Gratton, K.T. Moesta, P.M. Schlag, and M. Kaschke, “Contrast enhancement by edge effect corrections in frequency-domain optical mammography,” in OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, R.R. Alfano and J.G. Fujimoto, eds., (Optical Society of America, Washington DC, 1996,  Vol. 2, pp. 160–163.

J. Opt. Soc. Am. A (2)

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical Properties of Intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med.,  Vol. 12, 510–519 (1992).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (2)

A.H. Hielscher, R.E. Alcouffe, and R.L. Barbour, ‘Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).
[Crossref] [PubMed]

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[Crossref]

Other (10)

R. L. Barbour, H.L. Graber, Y. Pei, S. Zhong, and C.H. Schmitz, “Optical tomographic imaging of dynamic features of dense scattering media,” J. Opt. Soc. Am. A, in press (2001).
[Crossref]

H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by dynamic optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

G. Landis, S. Blattman, T. Panetta, C. H. Schmitz, H. L. Graber, Y. Pei, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE4250, San Jose, CA, in press, (2001).

J. C. Hebden, S. R. Arridge, and M. Schweiger, “Investigation of alterative data types for time-resolved optical tomography,” Trends in Optics and Photonics vol. 21, Advances in Optical Imaging and Photon Migration, James G. Fujimoto and Michael S. Patterson, eds. (Optical Society of America, Washington, DC1998), pp 162–167.

Y. Pei, H. L. Graber, and R L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt., 2001, in press.
[Crossref]

Y. Pei, Optical Tomographic Imaging Using the Finite Element Method, Ph. D. Thesis (1999), Polytechnic University.

Y. Pei, F.-B. Lin, and R. L. Barbour, “Model-based imaging of scattering media using relative detector values,” presented at 1999 OSA Annual Meeting & Exhibit: Optics in High-Tech Industries (Santa Clara, CA, September 26–30).

C. H. Schmitz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, “Performance characteristics of silicon photodiode (SiPD) based instrument for fast function optical tomography,” Proc. SPIE4250, San Jose, CA, in press, (2001).

P.E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York (1981).

T.O. McBride, B. W. Pogue, U.L. Österberg, and K.D. Paulsen, “Separation of absorption and scattering heterogeneities in NIR tomographic imaging of tissue,” in Biomedical Topical Meetings, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), pp. 339–341.

Supplementary Material (18)

» Media 1: MOV (1174 KB)     
» Media 2: MOV (614 KB)     
» Media 3: MOV (1044 KB)     
» Media 4: MOV (555 KB)     
» Media 5: MOV (1036 KB)     
» Media 6: MOV (495 KB)     
» Media 7: MOV (1120 KB)     
» Media 8: MOV (396 KB)     
» Media 9: MOV (391 KB)     
» Media 10: MOV (143 KB)     
» Media 11: MOV (385 KB)     
» Media 12: MOV (321 KB)     
» Media 13: MOV (171 KB)     
» Media 14: MOV (209 KB)     
» Media 15: MOV (323 KB)     
» Media 16: MOV (349 KB)     
» Media 17: MOV (414 KB)     
» Media 18: MOV (262 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Figure 1.
Figure 1.

Target geometry and source–detector configuration for simulation cases.

Figure 2.
Figure 2.

Original and reconstructed profiles for the target medium considered (7 types). Rows one and two are the original and reconstructed profiles for δµa , respectively; rows three and four are the corresponding original and reconstructed D profiles, respectively. Color scale indicates amplitude of perturbation.

Figure 3.
Figure 3.

Experimental phantom cases 1, 2, 3, and 4.

Figure 4.
Figure 4.

The reconstructed diffusion (top row) and absorption (bottom row) profiles for (left to right) cases one through four. Click on figure with mouse to see movie (<1.2 Mb for each). [Media 1] [Media 2] [Media 3] [Media 4] [Media 5] [Media 6] [Media 7] [Media 8]

Figure 5.
Figure 5.

Reconstructed diffusion (top row) and absorption (bottom row) profiles for experimental case one using standard CGD method only (column one), CGD method with range constraints (column two), CGD method with weight matrix scaling (column three) and CGD method with range constraints and matrix scaling (column four). Click on figure with mouse to see movie (<1.2 Mb for each). [Media 9] [Media 10] [Media 11] [Media 12] [Media 13] [Media 14] [Media 15] [Media 16]

Figure 6.
Figure 6.

Weight functions corresponding to source–detector pairs with source 1 and detectors 1 to 16 for absorption (A and B) and diffusion (C and D) coefficients, before (A and C) and after (B and D) applying matrix scaling. Click on figure with mouse to see movie (<0.5 Mb for each). [Media 17] [Media 18]

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

· [ D ( r ) u ( r ) ] μ a ( r ) u ( r ) = δ ( r r s ) , r Λ
W r ( μ a ) · δ μ a + W r ( D ) · δ D = δ u r ,
( δ u r ) i = ( ( u 1 ) i ( u 2 ) i ( u 2 ) i ) ( u r ) i , i = 1 , 2 , , M .
W ˜ r ( k ) = W r ( k ) · R ( k ) ,
( R ( k ) ) i j = { 1 1 M Σ m = 1 M ( W r ( k ) ) m j j = i , 0 j i , i , j = 1 , 2 , , N ,
W ˜ r ( μ a ) · δ μ ˜ a + W ˜ r ( D ) · δ D ˜ = δ u r ,
E = 1 2 ( W ˜ r · δ x ˜ δ u r ) T ( W ˜ r · δ x ˜ δ u r ) = 1 2 δ x ˜ T · A · δ x ˜ b T · δ x ˜ + 1 2 δ u r T · δ u r ,
g ( δ x ˜ ) = E ( δ x ˜ ) = A · δ x ˜ b = 0
δ x ˜ ( n ) = δ x ˜ ( n 1 ) α ( n ) d ( n ) .
δ μ a = R ( μ a ) · δ μ ˜ a , δ D = R ( D ) · δ D ˜ .

Metrics