Abstract

We formulate the equations describing pulse propagation in a one-dimensional optical structure described by the tight binding approximation, commonly used in solid-state physics to describe electrons levels in a periodic potential. The analysis is carried out in a way that highlights the correspondence with the analysis of pulse propagation in a conventional waveguide. Explicit expressions for the pulse in the waveguide are derived and discussed in the context of the sampling theorems of finite-energy space and time signals.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Active coupled-resonator optical waveguides. I. Gain enhancement and noise

Joyce K. S. Poon and Amnon Yariv
J. Opt. Soc. Am. B 24(9) 2378-2388 (2007)

Designing coupled-resonator optical waveguide delay lines

Joyce K. S. Poon, Jacob Scheuer, Yong Xu, and Amnon Yariv
J. Opt. Soc. Am. B 21(9) 1665-1673 (2004)

Side coupled adjacent resonators CROW - formation of mid-band zero group velocity

Ori Weiss and Jacob Scheuer
Opt. Express 17(17) 14817-14824 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Optical Electronics in Modern Communications, (Oxford University Press, 1997).
  2. N.W. Ashcroft and N.D. Mermin, Solid State Physics, (Harcourt, 1976).
  3. A. Yariv, Y. Xu, R.K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711 (1999).
    [Crossref]
  4. Y. Xu, R.K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17387(2000).
    [Crossref]
  5. S. Mookherjea and A. Yariv, “Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide,” Submitted to Phys. Rev. E (June 2001).
  6. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 842140 (2000).
    [Crossref] [PubMed]
  7. N.G.R. Broderick and C.M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E 553634 (1997).
    [Crossref]
  8. C.M. de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E 573502 (1998).
    [Crossref]
  9. J.D. Jackson, Classical Electrodynamics, third edition, (John Wiley & Sons, 1999).
  10. T.M. Apostol, Mathematical Analysis, (Addison-Wesley, 1964).
  11. A.V. Oppenheim, A.S. Willksy, and I.T. Young, Signals and Systems, (Prentice-Hall, 1995).
  12. J.M. Wozencraft and I.M. Jacobs, Principles of Communication Engineering, (John Wiley & Sons, 1965).

2000 (2)

Y. Xu, R.K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17387(2000).
[Crossref]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 842140 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

C.M. de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E 573502 (1998).
[Crossref]

1997 (1)

N.G.R. Broderick and C.M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E 553634 (1997).
[Crossref]

Apostol, T.M.

T.M. Apostol, Mathematical Analysis, (Addison-Wesley, 1964).

Ashcroft, N.W.

N.W. Ashcroft and N.D. Mermin, Solid State Physics, (Harcourt, 1976).

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 842140 (2000).
[Crossref] [PubMed]

Broderick, N.G.R.

N.G.R. Broderick and C.M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E 553634 (1997).
[Crossref]

de Sterke, C.M.

C.M. de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E 573502 (1998).
[Crossref]

N.G.R. Broderick and C.M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E 553634 (1997).
[Crossref]

Jackson, J.D.

J.D. Jackson, Classical Electrodynamics, third edition, (John Wiley & Sons, 1999).

Jacobs, I.M.

J.M. Wozencraft and I.M. Jacobs, Principles of Communication Engineering, (John Wiley & Sons, 1965).

Lee, R.K.

Mermin, N.D.

N.W. Ashcroft and N.D. Mermin, Solid State Physics, (Harcourt, 1976).

Mookherjea, S.

S. Mookherjea and A. Yariv, “Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide,” Submitted to Phys. Rev. E (June 2001).

Oppenheim, A.V.

A.V. Oppenheim, A.S. Willksy, and I.T. Young, Signals and Systems, (Prentice-Hall, 1995).

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 842140 (2000).
[Crossref] [PubMed]

Scherer, A.

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 842140 (2000).
[Crossref] [PubMed]

Willksy, A.S.

A.V. Oppenheim, A.S. Willksy, and I.T. Young, Signals and Systems, (Prentice-Hall, 1995).

Wozencraft, J.M.

J.M. Wozencraft and I.M. Jacobs, Principles of Communication Engineering, (John Wiley & Sons, 1965).

Xu, Y.

Yariv, A.

Y. Xu, R.K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17387(2000).
[Crossref]

A. Yariv, Y. Xu, R.K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711 (1999).
[Crossref]

A. Yariv, Optical Electronics in Modern Communications, (Oxford University Press, 1997).

S. Mookherjea and A. Yariv, “Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide,” Submitted to Phys. Rev. E (June 2001).

Young, I.T.

A.V. Oppenheim, A.S. Willksy, and I.T. Young, Signals and Systems, (Prentice-Hall, 1995).

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. E (2)

N.G.R. Broderick and C.M. de Sterke, “Theory of grating superstructures,” Phys. Rev. E 553634 (1997).
[Crossref]

C.M. de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E 573502 (1998).
[Crossref]

Phys. Rev. Lett. (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 842140 (2000).
[Crossref] [PubMed]

Other (7)

J.D. Jackson, Classical Electrodynamics, third edition, (John Wiley & Sons, 1999).

T.M. Apostol, Mathematical Analysis, (Addison-Wesley, 1964).

A.V. Oppenheim, A.S. Willksy, and I.T. Young, Signals and Systems, (Prentice-Hall, 1995).

J.M. Wozencraft and I.M. Jacobs, Principles of Communication Engineering, (John Wiley & Sons, 1965).

S. Mookherjea and A. Yariv, “Optical pulse propagation and holographic storage in a coupled-resonator optical waveguide,” Submitted to Phys. Rev. E (June 2001).

A. Yariv, Optical Electronics in Modern Communications, (Oxford University Press, 1997).

N.W. Ashcroft and N.D. Mermin, Solid State Physics, (Harcourt, 1976).

Supplementary Material (1)

» Media 1: MPEG (752 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

(752 kB) Pulse propagation in a CROW structure described by the tight binding approximation. The envelope of the eigenmode of the structure is shown in red, and the Gaussian pulse envelope in blue, propagating from left to right, indexed by an arbitrary time coordinate at the upper-right corner.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ϕ k ( z ) = n exp ( i n k R ) l b l ψ l ( z n R )
k m = m ( 2 π L )
ε ( z , t = 0 ) = d k 2 π c k ϕ k ( z )
ϕ k ( z ) = [ Δ k m = δ ( k m Δ k ) ] n exp ( inkR ) l b l ψ l ( z n R )
ε ( z , t ) = d k 2 π e i ω ( k ) t c k ϕ k ( z ) .
ω ( k 0 + K ) = ω ( k 0 ) + d ω d ω k = k 0 K + ω 0 + v g K
ε ( z , t ) = e i ω 0 t d K 2 π e i v g t K c k 0 + K ϕ k 0 + K ( z ) .
ε ( z = 0 , t ) = e i ω 0 t E ( z = 0 , t ) ,
c k 0 + K = 1 ϕ k 0 + K ( 0 ) d ( v g t ) E ( z = 0 , t ) e i v g t K .
ε ( z , t ) = e i ω 0 t d ( v g t ) E ( z = 0 , t ) d K 2 π ϕ k 0 + K ( z ) ϕ k 0 + K ( 0 ) e i v g ( t t ) K .
ε ( z , t ) = e i ω 0 t d ( v g t ) E ( z = 0 , t ) d K 2 π e i ( k 0 + K ) z e i v g ( t t ) K
= e i ( ω 0 t k 0 z ) E ( z = 0 , t z v g ) .
ϕ k 0 + K ( 0 ) = n e i ( k 0 + K ) n R l b l ψ ( n R )
= 1 + l b l ψ l ( R ) 2 cos [ ( k 0 + K ) R ] +
[ ϕ k 0 + K ( 0 ) ] 1 1 l b l ψ l ( R ) 2 cos [ ( k 0 + K ) R ] ,
ε ( z , t ) = e i ω 0 t n e i k 0 n R l b l ψ l ( z n R ) d ( v g t ) E ( z = 0 , t )
× d K 2 π [ Δ K m δ ( K m Δ K ) ] e i T K
Δ K m = δ ( K m Δ K ) Ƒ Ʈ m = δ ( T m Δ T )
ε ( z , t ) = e i ω 0 t n e i k 0 n R l b l ψ l ( z n R ) m E ( z = 0 , t n R + m L v g ) .
Δ ε ( z , t ) = l b l ψ l ( R ) e i ω 0 t { n e i k 0 ( n 1 ) R l b l ψ l ( z n R ) ×
m E ( z = 0 , t ( n 1 ) R + m L v g ) + n e i k 0 ( n + 1 ) R ×
l b l ψ l ( z n R ) m E ( z = 0 , t ( n + 1 ) R + m L v g ) } .
2 π ( 2 π / L ) v g = 2 T max which implies T max = 1 2 L v g .
2 π R = 2 K max which implies K max = 1 2 ( 2 π R ) .
1 2 v g T min = R which implies T min = 2 R v g .
D = ( 2 π R v g ) ( 1 2 L v g ) + 1 = π N + 1 ,

Metrics