Abstract

In-vivo imaging can be achieved with a coherent-fiber-bundle based confocal reflectance microscope. Such a microscope could provide the means to detect pre-cancerous lesions in the cervix by characterizing cells’ nuclear-to-cytoplasmic ratio. In this paper we present the design of such a fiber confocal reflectance microscope, with an emphasis on its optical sub-systems. The optical sub-systems consist of a commercially available microscope objective and custom designed telescope, scan lens, and coupling lens systems. The performance of the fiber confocal reflectance microscope was evaluated by imaging a resolution bar target and human cervical biopsy tissues. The results presented in this paper demonstrate a lateral resolution of 2 µm and axial resolution of 6 µm. The sensitivity of the system defined by the smallest refractive-index mismatch that can be detected is approximately Δn~0.05.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope

Chen Liang, Kung-Bin Sung, Rebecca R. Richards-Kortum, and Michael R. Descour
Appl. Opt. 41(22) 4603-4610 (2002)

Achromatized endomicroscope objective for optical biopsy

Matthew Kyrish and Tomasz S. Tkaczyk
Biomed. Opt. Express 4(2) 287-297 (2013)

Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo

Kung-Bin Sung, Rebecca Richards-Kortum, Michele Follen, Anais Malpica, Chen Liang, and Michael R. Descour
Opt. Express 11(24) 3171-3181 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley, ed., Handbook of biological confocal microscopy, 2nd ed. (Plenum, New York, 1995).
    [Crossref]
  2. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18, 565ߝ567 (1993).
    [Crossref] [PubMed]
  3. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Comm. 188, 267ߝ273 (2001).
    [Crossref]
  4. D. L. Dickensheets and G. S. Kino, “Silicon-micromachined scanning confocal optical microscope,” J. Microelectromech. Syst. 7, 38ߝ47 (1998).
    [Crossref]
  5. C. Williams, Cancer biology and management: An introduction (JohnWiley & Sons Ltd., West Sussex, England, 1990).
  6. C. Smithpeter, A. Dunn, R. Drezek, T. collier, and R. Richards-Kortum, “Near real time confocal microscope of cultured amelanotic cells: sources of signal, contrast agents and limits of contrast,” J. Biomed. Opt. 3, 429ߝ436 (1998)
    [Crossref] [PubMed]
  7. R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” AM J Obstet Gynecol 182, 1135ߝ1139 (2000).
    [Crossref] [PubMed]
  8. A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Source of contrast in confocal reflectance imaging,” Appl. Optics 38, 2105ߝ2115 (1999).
  9. Sumitomo Electric U.S.A., Inc., Santa Clara, California, USA, http://www.sumitomoelectricusa.com.
  10. L. Yang, G. Wang, J. Wang, and Z. Xu, “Influence of fiber terminal face reflection on fiber optic confocal scanning microscope,” in 1999 International conference on biomedical optics, Q. Luo, B. Chance, L. V. Wang, and S. L. Jacques eds., Proc. SPIE3863, 332ߝ336 (1999).
    [Crossref]
  11. Gradium lenses are a product of LightPath Technologies, Inc., Albuquerque, New Mexico, USA, http://www.lightpath.com.
  12. MediVision Optics, Anaheim, California, USA, http://www.medivision-net.com.
  13. ZEMAX is a product of Focus Software, Inc., Tucson, Arizona, USA, http://www.focus-software.com.
  14. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (The McGraw-Hill Companies, Inc., 1996).

2001 (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Comm. 188, 267ߝ273 (2001).
[Crossref]

2000 (1)

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” AM J Obstet Gynecol 182, 1135ߝ1139 (2000).
[Crossref] [PubMed]

1999 (1)

A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Source of contrast in confocal reflectance imaging,” Appl. Optics 38, 2105ߝ2115 (1999).

1998 (2)

D. L. Dickensheets and G. S. Kino, “Silicon-micromachined scanning confocal optical microscope,” J. Microelectromech. Syst. 7, 38ߝ47 (1998).
[Crossref]

C. Smithpeter, A. Dunn, R. Drezek, T. collier, and R. Richards-Kortum, “Near real time confocal microscope of cultured amelanotic cells: sources of signal, contrast agents and limits of contrast,” J. Biomed. Opt. 3, 429ߝ436 (1998)
[Crossref] [PubMed]

1993 (1)

Aziz, D.

Brookner, C.

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” AM J Obstet Gynecol 182, 1135ߝ1139 (2000).
[Crossref] [PubMed]

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Comm. 188, 267ߝ273 (2001).
[Crossref]

Collier, T.

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” AM J Obstet Gynecol 182, 1135ߝ1139 (2000).
[Crossref] [PubMed]

C. Smithpeter, A. Dunn, R. Drezek, T. collier, and R. Richards-Kortum, “Near real time confocal microscope of cultured amelanotic cells: sources of signal, contrast agents and limits of contrast,” J. Biomed. Opt. 3, 429ߝ436 (1998)
[Crossref] [PubMed]

Dickensheets, D. L.

D. L. Dickensheets and G. S. Kino, “Silicon-micromachined scanning confocal optical microscope,” J. Microelectromech. Syst. 7, 38ߝ47 (1998).
[Crossref]

Drezek, R.

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” AM J Obstet Gynecol 182, 1135ߝ1139 (2000).
[Crossref] [PubMed]

C. Smithpeter, A. Dunn, R. Drezek, T. collier, and R. Richards-Kortum, “Near real time confocal microscope of cultured amelanotic cells: sources of signal, contrast agents and limits of contrast,” J. Biomed. Opt. 3, 429ߝ436 (1998)
[Crossref] [PubMed]

Dunn, A.

C. Smithpeter, A. Dunn, R. Drezek, T. collier, and R. Richards-Kortum, “Near real time confocal microscope of cultured amelanotic cells: sources of signal, contrast agents and limits of contrast,” J. Biomed. Opt. 3, 429ߝ436 (1998)
[Crossref] [PubMed]

Dunn, A. K.

A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Source of contrast in confocal reflectance imaging,” Appl. Optics 38, 2105ߝ2115 (1999).

Gmitro, A. F.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (The McGraw-Hill Companies, Inc., 1996).

Kino, G. S.

D. L. Dickensheets and G. S. Kino, “Silicon-micromachined scanning confocal optical microscope,” J. Microelectromech. Syst. 7, 38ߝ47 (1998).
[Crossref]

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Comm. 188, 267ߝ273 (2001).
[Crossref]

Lotan, R.

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” AM J Obstet Gynecol 182, 1135ߝ1139 (2000).
[Crossref] [PubMed]

Malpica, A.

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” AM J Obstet Gynecol 182, 1135ߝ1139 (2000).
[Crossref] [PubMed]

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Comm. 188, 267ߝ273 (2001).
[Crossref]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Comm. 188, 267ߝ273 (2001).
[Crossref]

Richards-Kortum, R.

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” AM J Obstet Gynecol 182, 1135ߝ1139 (2000).
[Crossref] [PubMed]

A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Source of contrast in confocal reflectance imaging,” Appl. Optics 38, 2105ߝ2115 (1999).

C. Smithpeter, A. Dunn, R. Drezek, T. collier, and R. Richards-Kortum, “Near real time confocal microscope of cultured amelanotic cells: sources of signal, contrast agents and limits of contrast,” J. Biomed. Opt. 3, 429ߝ436 (1998)
[Crossref] [PubMed]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Comm. 188, 267ߝ273 (2001).
[Crossref]

Smithpeter, C.

A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Source of contrast in confocal reflectance imaging,” Appl. Optics 38, 2105ߝ2115 (1999).

C. Smithpeter, A. Dunn, R. Drezek, T. collier, and R. Richards-Kortum, “Near real time confocal microscope of cultured amelanotic cells: sources of signal, contrast agents and limits of contrast,” J. Biomed. Opt. 3, 429ߝ436 (1998)
[Crossref] [PubMed]

Wang, G.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Influence of fiber terminal face reflection on fiber optic confocal scanning microscope,” in 1999 International conference on biomedical optics, Q. Luo, B. Chance, L. V. Wang, and S. L. Jacques eds., Proc. SPIE3863, 332ߝ336 (1999).
[Crossref]

Wang, J.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Influence of fiber terminal face reflection on fiber optic confocal scanning microscope,” in 1999 International conference on biomedical optics, Q. Luo, B. Chance, L. V. Wang, and S. L. Jacques eds., Proc. SPIE3863, 332ߝ336 (1999).
[Crossref]

Welch, A. J.

A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Source of contrast in confocal reflectance imaging,” Appl. Optics 38, 2105ߝ2115 (1999).

Williams, C.

C. Williams, Cancer biology and management: An introduction (JohnWiley & Sons Ltd., West Sussex, England, 1990).

Xu, Z.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Influence of fiber terminal face reflection on fiber optic confocal scanning microscope,” in 1999 International conference on biomedical optics, Q. Luo, B. Chance, L. V. Wang, and S. L. Jacques eds., Proc. SPIE3863, 332ߝ336 (1999).
[Crossref]

Yang, L.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Influence of fiber terminal face reflection on fiber optic confocal scanning microscope,” in 1999 International conference on biomedical optics, Q. Luo, B. Chance, L. V. Wang, and S. L. Jacques eds., Proc. SPIE3863, 332ߝ336 (1999).
[Crossref]

AM J Obstet Gynecol (1)

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” AM J Obstet Gynecol 182, 1135ߝ1139 (2000).
[Crossref] [PubMed]

Appl. Optics (1)

A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, “Source of contrast in confocal reflectance imaging,” Appl. Optics 38, 2105ߝ2115 (1999).

J. Biomed. Opt. (1)

C. Smithpeter, A. Dunn, R. Drezek, T. collier, and R. Richards-Kortum, “Near real time confocal microscope of cultured amelanotic cells: sources of signal, contrast agents and limits of contrast,” J. Biomed. Opt. 3, 429ߝ436 (1998)
[Crossref] [PubMed]

J. Microelectromech. Syst. (1)

D. L. Dickensheets and G. S. Kino, “Silicon-micromachined scanning confocal optical microscope,” J. Microelectromech. Syst. 7, 38ߝ47 (1998).
[Crossref]

Opt. Comm. (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Comm. 188, 267ߝ273 (2001).
[Crossref]

Opt. Lett. (1)

Other (8)

C. Williams, Cancer biology and management: An introduction (JohnWiley & Sons Ltd., West Sussex, England, 1990).

Sumitomo Electric U.S.A., Inc., Santa Clara, California, USA, http://www.sumitomoelectricusa.com.

L. Yang, G. Wang, J. Wang, and Z. Xu, “Influence of fiber terminal face reflection on fiber optic confocal scanning microscope,” in 1999 International conference on biomedical optics, Q. Luo, B. Chance, L. V. Wang, and S. L. Jacques eds., Proc. SPIE3863, 332ߝ336 (1999).
[Crossref]

Gradium lenses are a product of LightPath Technologies, Inc., Albuquerque, New Mexico, USA, http://www.lightpath.com.

MediVision Optics, Anaheim, California, USA, http://www.medivision-net.com.

ZEMAX is a product of Focus Software, Inc., Tucson, Arizona, USA, http://www.focus-software.com.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (The McGraw-Hill Companies, Inc., 1996).

J. B. Pawley, ed., Handbook of biological confocal microscopy, 2nd ed. (Plenum, New York, 1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Diagram of components layout of the fiber confocal reflectance microscope.

Fig. 2.
Fig. 2.

Telescope and scan-lens designs. Part (a) shows the optical layout of the telescope. Part (b) shows the optical layout of the scan lens assembly. The color of each ray bundle corresponds to a different field position at the coherent fiber bundle, denoted by h. Blue rays represent on-axis field position, green rays represent h=0.35 mm, and red rays represent h=0.5 mm.

Fig. 3.
Fig. 3.

Geometric spot diagram for the telescope/scan lens system at three different field positions at the coherent fiber bundle, denoted by h. The circle in each diagram represents the size of the diffraction Airy disc. Spot radius values given in the diagram are in micrometers.

Fig. 4.
Fig. 4.

Part (a) shows the focal spot formed by the telescope/scan lens system. The spot diameter is approximately 3.4 µm. Part (b) shows the distal end of the fiber bundle when only one fiber is illuminated by the telescope/scan lens. Dotted circles represent the surrounding fibers.

Fig. 5.
Fig. 5.

Optical layout for the coupling lens system. The color of the ray bundle corresponding different field position. Blue rays represent on axis, green rays represent h=0.35 mm, and red rays represent h=0.5 mm.

Fig. 6.
Fig. 6.

Geometric spot diagrams for the coupling lens system at three different field positions at the coherent fiber bundle, denoted by h. The circle in each diagram represents the size of the diffraction Airy disc. Spot radius values given in the diagram are measured in micrometers

Fig. 7.
Fig. 7.

Image of resolution target taken with the fiber confocal reflectance microscope. The smallest features have line thickness and spacing of approximately 2 µm.

Fig. 8.
Fig. 8.

Reflected signal from imaging a plane mirror as a function of defocus. The FWHM determines the axial resolution and it is approximately 6 µm.

Fig. 9.
Fig. 9.

Confocal image of epithelial cells from cervical biopsies. Part (a) shows normal tissues and part (b) shows abnormal tissues. Acetic acid solution of 6% concentration was used to enhance the contrast. Scale bar indicates 20 µm.

Tables (2)

Tables Icon

Table 1. Prescription data for telescope and scan lens

Tables Icon

Table 2. Prescription data for telescope and coupling lens

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Lateral resolution = Fiber spacing m microscope objective coupling lens = 1.8 μ m
FOV Scan lens = FOV Microscope objective × m microscope objective Coupling lens 1 mm .
2.44 λ NA = 4.3 μ m

Metrics