Abstract

Recent developments in polymer microstructured optical fibres allow for the realisation of microstructures in fibres that would be problematic to fabricate using glass-based capillary stacking. We present one class of such structures, where the holes lie on circular rings. A fibre of this type is fabricated and shown to be single moded for relatively long lengths of fibre, whereas shorter lengths are multimoded. An average index model for these fibres is developed. Comparison of its predictions to the calculated properties of the exact structure indicates that the ring structures emulate homogeneous rings of lower refractive index resulting in the ring structured fibres behaving approximately as cylindrically layered fibres.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Microstructured polymer optical fibre

Martijn A. van Eijkelenborg, Maryanne C. J. Large, Alexander Argyros, Joseph Zagari, Steven Manos, Nader A. Issa, Ian Bassett, Simon Fleming, Ross C. McPhedran, C. Martijn de Sterke, and Nicolae A.P. Nicorovici
Opt. Express 9(7) 319-327 (2001)

Identifying hollow waveguide guidance in air-cored microstructured optical fibres

Nader A. Issa, Alexander Argyros, Martijn A. van Eijkelenborg, and Joseph Zagari
Opt. Express 11(9) 996-1001 (2003)

Analysis of ring-structured Bragg fibres for single TE mode guidance

Alexander Argyros, Ian M. Bassett, Martijn A. van Eijkelenborg, and Maryanne C. J. Large
Opt. Express 12(12) 2688-2698 (2004)

References

  • View by:
  • |
  • |
  • |

  1. T.A. Birks, J.C. Knight, and P.St.J. Russell, “Endlessly single-mode photonic crystal fibre,” Opt. Lett. 22, 961–963 (1997).
    [Crossref] [PubMed]
  2. H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO 2001, (Optical Society of America, Washington, D.C., 2001)
  3. E. Silvestre, M.V. Andres, and P. Andres, “Biorthonormal-basis method for the vector description of optical fiber modes,” J. Lightwave Technol 16, 923–928 (1998).
    [Crossref]
  4. D. Mogilevtsev, T.A. Birks, and P.St.J. Russell, “Localised function method for modelling defect modes in 2-D photonic crystals,” J. Lightwave Technol. 17, 2078–2081 (2000).
    [Crossref]
  5. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, “Holey optical fibres: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
    [Crossref]
  6. T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, “Confinement losses in microstructured optical fibres,” Opt. Lett. 26, 1660–1662 (2001).
    [Crossref]
  7. M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C.M. de Sterke, and N.A.P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9, 319–327 (2001), http://www.opticsexpress.org/oearchive/source/35051.htm.
    [Crossref] [PubMed]
  8. J. Xu, J. Song, C Li, and K. Ueda, “Cylindrically symmetric hollow fiber,” Optics Commun. 182, 343–348 (2000).
    [Crossref]
  9. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
    [Crossref]
  10. Y. Fink, D.J. Ripin, S. Fan, C. Chen, J.D. Joannopoulos, and E.L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041(1999).
    [Crossref]
  11. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero dispersion at short wavelengths,” Electron. Lett. 36, 514–515 (2000)
    [Crossref]
  12. M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, and J.D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419 (2000)
    [Crossref] [PubMed]
  13. G.W. Milton, The theory of composites, (Cambridge University Press, London, 2001).
  14. W.C. Chew, Waves and fields in inhomogeneous media, Chapter 3 (Van Nostrand Reinhold, New York1990).

2001 (2)

2000 (4)

J. Xu, J. Song, C Li, and K. Ueda, “Cylindrically symmetric hollow fiber,” Optics Commun. 182, 343–348 (2000).
[Crossref]

D. Mogilevtsev, T.A. Birks, and P.St.J. Russell, “Localised function method for modelling defect modes in 2-D photonic crystals,” J. Lightwave Technol. 17, 2078–2081 (2000).
[Crossref]

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero dispersion at short wavelengths,” Electron. Lett. 36, 514–515 (2000)
[Crossref]

M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, and J.D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419 (2000)
[Crossref] [PubMed]

1999 (2)

1998 (1)

E. Silvestre, M.V. Andres, and P. Andres, “Biorthonormal-basis method for the vector description of optical fiber modes,” J. Lightwave Technol 16, 923–928 (1998).
[Crossref]

1997 (1)

1978 (1)

Andres, M.V.

E. Silvestre, M.V. Andres, and P. Andres, “Biorthonormal-basis method for the vector description of optical fiber modes,” J. Lightwave Technol 16, 923–928 (1998).
[Crossref]

Andres, P.

E. Silvestre, M.V. Andres, and P. Andres, “Biorthonormal-basis method for the vector description of optical fiber modes,” J. Lightwave Technol 16, 923–928 (1998).
[Crossref]

Argyros, A.

Bassett, I.

Bennett, P.J.

Birks, T.A.

Botten, L.C.

Brechet, F.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero dispersion at short wavelengths,” Electron. Lett. 36, 514–515 (2000)
[Crossref]

Broderick, N.G.R.

Chen, C.

Chew, W.C.

W.C. Chew, Waves and fields in inhomogeneous media, Chapter 3 (Van Nostrand Reinhold, New York1990).

de Sterke, C.M.

Fan, S.

Fink, Y.

Fleming, S.

Fujita, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO 2001, (Optical Society of America, Washington, D.C., 2001)

Ibanescu, M.

M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, and J.D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419 (2000)
[Crossref] [PubMed]

Issa, N.

Joannopoulos, J.D.

Kakazawa, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO 2001, (Optical Society of America, Washington, D.C., 2001)

Kawanishi, S.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO 2001, (Optical Society of America, Washington, D.C., 2001)

Knight, J.C.

Kubota, H.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO 2001, (Optical Society of America, Washington, D.C., 2001)

Large, M.C.J.

Li, C

J. Xu, J. Song, C Li, and K. Ueda, “Cylindrically symmetric hollow fiber,” Optics Commun. 182, 343–348 (2000).
[Crossref]

Manos, S.

Marcou, J.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero dispersion at short wavelengths,” Electron. Lett. 36, 514–515 (2000)
[Crossref]

Marom, E.

McPhedran, R.C.

Milton, G.W.

G.W. Milton, The theory of composites, (Cambridge University Press, London, 2001).

Mogilevtsev, D.

Monro, T.M.

Nicorovici, N.A.P.

Pagnoux, D.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero dispersion at short wavelengths,” Electron. Lett. 36, 514–515 (2000)
[Crossref]

Richardson, D.J.

Ripin, D.J.

Roy, P.

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero dispersion at short wavelengths,” Electron. Lett. 36, 514–515 (2000)
[Crossref]

Russell, P.St.J.

Silvestre, E.

E. Silvestre, M.V. Andres, and P. Andres, “Biorthonormal-basis method for the vector description of optical fiber modes,” J. Lightwave Technol 16, 923–928 (1998).
[Crossref]

Song, J.

J. Xu, J. Song, C Li, and K. Ueda, “Cylindrically symmetric hollow fiber,” Optics Commun. 182, 343–348 (2000).
[Crossref]

Steel, M.J.

Suzuki, K.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO 2001, (Optical Society of America, Washington, D.C., 2001)

Tanaka, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO 2001, (Optical Society of America, Washington, D.C., 2001)

Thomas, E.L.

Ueda, K.

J. Xu, J. Song, C Li, and K. Ueda, “Cylindrically symmetric hollow fiber,” Optics Commun. 182, 343–348 (2000).
[Crossref]

van Eijkelenborg, M.A.

White, T.P.

Xu, J.

J. Xu, J. Song, C Li, and K. Ueda, “Cylindrically symmetric hollow fiber,” Optics Commun. 182, 343–348 (2000).
[Crossref]

Yariv, A.

Yeh, P.

Zagari, J.

Electron. Lett. (1)

F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero dispersion at short wavelengths,” Electron. Lett. 36, 514–515 (2000)
[Crossref]

J. Lightwave Technol (1)

E. Silvestre, M.V. Andres, and P. Andres, “Biorthonormal-basis method for the vector description of optical fiber modes,” J. Lightwave Technol 16, 923–928 (1998).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Lett. (2)

Optics Commun. (1)

J. Xu, J. Song, C Li, and K. Ueda, “Cylindrically symmetric hollow fiber,” Optics Commun. 182, 343–348 (2000).
[Crossref]

Science (1)

M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, and J.D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419 (2000)
[Crossref] [PubMed]

Other (3)

G.W. Milton, The theory of composites, (Cambridge University Press, London, 2001).

W.C. Chew, Waves and fields in inhomogeneous media, Chapter 3 (Van Nostrand Reinhold, New York1990).

H. Kubota, K. Suzuki, S. Kawanishi, M. Kakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2 km-long photonic crystal fibre with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” Postdeadline paper CPD3, Conference on Lasers and Electro-Optics CLEO 2001, (Optical Society of America, Washington, D.C., 2001)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical micrograph of the cross section of the preform neck-down region. The image width corresponds to approximately 1.5 mm. Several ring structured sections can be seen with different sized holes. The structure on which the optical experiments were conducted and which was modelled is that in the lower left corner with the larger holes.

Fig. 2.
Fig. 2.

Electron micrograph of a cross section of the microstructured polymer optical fibre.

Fig. 3.
Fig. 3.

(a) A circular ring of holes is expected to behave like a circular layer of lower refractive index (b), the corresponding refractive index profile is shown in (c). Several equally spaced rings of holes of equal air-filling fraction will result in an index profile such as that shown in (d), i.e. a Bragg fibre.

Figure 4.
Figure 4.

The average index profile calculated for the structure described in the text. The averaging method used was to take the arithmetic mean of the refractive index over 360° for fixed values of the radius. This gives a value for the average between the two limits of Eq. (1). The average index profile is constructed out of 40 layers.

Tables (1)

Tables Icon

Table 1. Mode class and effective indices of the first five modes as calculated by the multipole method and the average index model, using the arithmetic mean of the refractive index.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( f n inc 2 + 1 f n matrix 2 ) 1 2 n av fn inc 2 + ( 1 f ) n matrix 2 .
n av = fn inc + ( 1 f ) n matrix ,

Metrics