Abstract

This paper discusses the accuracy of the optical determination of the oxygenated and deoxygenated hemoglobin content of human skin under the influence of a melanin layer for a multi-wavelengths imager. The relation between the nonlinear results by Monte Carlo simulation (MCS) and the modified Lambert Beer’s law (MLB) is also clarified, emphasizing the importance of the absolute values of skin pigments and their influence on the mean path-length used in MLB. The fitting procedure of the MCS data to the actual skin spectra is shown to obtain the absolute values. It is also shown that once the proper mean path-lengths have been determined, MLB can be used fairly well within an accuracy of 80% compared with MCS. Images of oxygenated hemoglobin with a newly-developed four-wavelength camera are presented to demonstrate the advantages of a multi-wavelength system.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. San Wan, R. Rox Anderson, and John A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34, 493–499 (1981).
    [PubMed]
  2. R. Rox Anderson, B. S., John A. Parrish, and M. D., “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
    [Crossref]
  3. I. V. Meglinsky and S.J. Matcher, “Analysis of reflectance spectra for skin oxygenation measurements,” in Controlling of the Optical Properties, V. V. Tuchin and J. Lademann, Editors, Proc. SPIE4162, 46–53 (2000).
  4. I. V. Meglinsky and S.J. Matcher, “Modelling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput. 39, 44–50 (2001).
    [Crossref] [PubMed]
  5. M. Shimada, Y. Masuda, M. Y. Yamada, M. Itoh, M. Takahashi, and T. Yatagai, “Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law,” Optical Review 7, 348–352 (2000).
    [Crossref]
  6. M. J. CVanGemert, Steven L. Jacques, H. J. C. M. Sternborg, and W.M. Star, “Skin Optics,” IEEE Transactions On Biomedical Engineering 36, 1146–1154 (1989).
    [Crossref]
  7. K. H. Frank, M. Kessler, K. Appelbaum, and W. Dummler, “The Erlangen micro-lightguide spectrometer EMHO I,” Phys.Med. Biol. 34, 1883–1900 (1989).
    [Crossref] [PubMed]
  8. G. B. Hanna, D. J. Newton, D. K. Harrison, J. J. F. Belch, and P. T. McCollum, “Use of lightguide spectrophotometry to quantify skin oxygenation in a variable model of venous hypertension,” Br. J. Surg. 82, 1352–1356 (1995).
    [Crossref] [PubMed]
  9. Y. Kakihana, M. Kessler, D. Alexandre, J, and A. Krug, “Stable and reliable measurement of intracapillary hemoglobin-oxygenation in human skin by EMPHO II,” SPIE 2979, 378–389 (1997).
    [Crossref]
  10. N. Tsumura, H. Haneishi, and Y. Miyake, “Independent -component analysis of skin color image,” J. Opt. Soc. Am. A 16, 2169–2176 (1999).
    [Crossref]
  11. N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of spectral absorbance image in human skin,” Optical Review 7, 479–482 (2000).
    [Crossref]
  12. N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” IS&T/SID’s 8th Color Imaging Conference, Color Science, Systems and Appl. 81–84 (2000).
  13. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin”, CLIN. CHEM. 37, 1633–1638 (1991).
    [PubMed]
  14. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1987).
    [Crossref]
  15. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Way, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [Crossref] [PubMed]
  16. M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tunazawa, “Optical imaging of hemoglobin distribution in human skin,” in Photon Migration, Optical Coherence Tomography, and Microscopy, Stefan Anderson-Engels and Michael Kaschke, Editor, Proc. SPIE4431, (now printed)

2001 (1)

I. V. Meglinsky and S.J. Matcher, “Modelling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput. 39, 44–50 (2001).
[Crossref] [PubMed]

2000 (2)

M. Shimada, Y. Masuda, M. Y. Yamada, M. Itoh, M. Takahashi, and T. Yatagai, “Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law,” Optical Review 7, 348–352 (2000).
[Crossref]

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of spectral absorbance image in human skin,” Optical Review 7, 479–482 (2000).
[Crossref]

1999 (1)

1997 (1)

Y. Kakihana, M. Kessler, D. Alexandre, J, and A. Krug, “Stable and reliable measurement of intracapillary hemoglobin-oxygenation in human skin by EMPHO II,” SPIE 2979, 378–389 (1997).
[Crossref]

1995 (1)

G. B. Hanna, D. J. Newton, D. K. Harrison, J. J. F. Belch, and P. T. McCollum, “Use of lightguide spectrophotometry to quantify skin oxygenation in a variable model of venous hypertension,” Br. J. Surg. 82, 1352–1356 (1995).
[Crossref] [PubMed]

1991 (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin”, CLIN. CHEM. 37, 1633–1638 (1991).
[PubMed]

1989 (2)

M. J. CVanGemert, Steven L. Jacques, H. J. C. M. Sternborg, and W.M. Star, “Skin Optics,” IEEE Transactions On Biomedical Engineering 36, 1146–1154 (1989).
[Crossref]

K. H. Frank, M. Kessler, K. Appelbaum, and W. Dummler, “The Erlangen micro-lightguide spectrometer EMHO I,” Phys.Med. Biol. 34, 1883–1900 (1989).
[Crossref] [PubMed]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Way, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

1987 (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1987).
[Crossref]

1981 (2)

San Wan, R. Rox Anderson, and John A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34, 493–499 (1981).
[PubMed]

R. Rox Anderson, B. S., John A. Parrish, and M. D., “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref]

Adam, G.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1987).
[Crossref]

Alexandre, D.

Y. Kakihana, M. Kessler, D. Alexandre, J, and A. Krug, “Stable and reliable measurement of intracapillary hemoglobin-oxygenation in human skin by EMPHO II,” SPIE 2979, 378–389 (1997).
[Crossref]

Appelbaum, K.

K. H. Frank, M. Kessler, K. Appelbaum, and W. Dummler, “The Erlangen micro-lightguide spectrometer EMHO I,” Phys.Med. Biol. 34, 1883–1900 (1989).
[Crossref] [PubMed]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Way, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

B. S.,

R. Rox Anderson, B. S., John A. Parrish, and M. D., “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref]

Belch, J. J. F.

G. B. Hanna, D. J. Newton, D. K. Harrison, J. J. F. Belch, and P. T. McCollum, “Use of lightguide spectrophotometry to quantify skin oxygenation in a variable model of venous hypertension,” Br. J. Surg. 82, 1352–1356 (1995).
[Crossref] [PubMed]

Buursma, A.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin”, CLIN. CHEM. 37, 1633–1638 (1991).
[PubMed]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Way, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

CVanGemert, M. J.

M. J. CVanGemert, Steven L. Jacques, H. J. C. M. Sternborg, and W.M. Star, “Skin Optics,” IEEE Transactions On Biomedical Engineering 36, 1146–1154 (1989).
[Crossref]

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Way, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Dummler, W.

K. H. Frank, M. Kessler, K. Appelbaum, and W. Dummler, “The Erlangen micro-lightguide spectrometer EMHO I,” Phys.Med. Biol. 34, 1883–1900 (1989).
[Crossref] [PubMed]

Frank, K. H.

K. H. Frank, M. Kessler, K. Appelbaum, and W. Dummler, “The Erlangen micro-lightguide spectrometer EMHO I,” Phys.Med. Biol. 34, 1883–1900 (1989).
[Crossref] [PubMed]

Haneishi, H.

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of spectral absorbance image in human skin,” Optical Review 7, 479–482 (2000).
[Crossref]

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent -component analysis of skin color image,” J. Opt. Soc. Am. A 16, 2169–2176 (1999).
[Crossref]

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” IS&T/SID’s 8th Color Imaging Conference, Color Science, Systems and Appl. 81–84 (2000).

Hanna, G. B.

G. B. Hanna, D. J. Newton, D. K. Harrison, J. J. F. Belch, and P. T. McCollum, “Use of lightguide spectrophotometry to quantify skin oxygenation in a variable model of venous hypertension,” Br. J. Surg. 82, 1352–1356 (1995).
[Crossref] [PubMed]

Harrison, D. K.

G. B. Hanna, D. J. Newton, D. K. Harrison, J. J. F. Belch, and P. T. McCollum, “Use of lightguide spectrophotometry to quantify skin oxygenation in a variable model of venous hypertension,” Br. J. Surg. 82, 1352–1356 (1995).
[Crossref] [PubMed]

Ito, Y.

M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tunazawa, “Optical imaging of hemoglobin distribution in human skin,” in Photon Migration, Optical Coherence Tomography, and Microscopy, Stefan Anderson-Engels and Michael Kaschke, Editor, Proc. SPIE4431, (now printed)

Itoh, M.

M. Shimada, Y. Masuda, M. Y. Yamada, M. Itoh, M. Takahashi, and T. Yatagai, “Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law,” Optical Review 7, 348–352 (2000).
[Crossref]

J,

Y. Kakihana, M. Kessler, D. Alexandre, J, and A. Krug, “Stable and reliable measurement of intracapillary hemoglobin-oxygenation in human skin by EMPHO II,” SPIE 2979, 378–389 (1997).
[Crossref]

Jacques, Steven L.

M. J. CVanGemert, Steven L. Jacques, H. J. C. M. Sternborg, and W.M. Star, “Skin Optics,” IEEE Transactions On Biomedical Engineering 36, 1146–1154 (1989).
[Crossref]

Kakihana, Y.

Y. Kakihana, M. Kessler, D. Alexandre, J, and A. Krug, “Stable and reliable measurement of intracapillary hemoglobin-oxygenation in human skin by EMPHO II,” SPIE 2979, 378–389 (1997).
[Crossref]

Kawabuchi, M.

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” IS&T/SID’s 8th Color Imaging Conference, Color Science, Systems and Appl. 81–84 (2000).

Kessler, M.

Y. Kakihana, M. Kessler, D. Alexandre, J, and A. Krug, “Stable and reliable measurement of intracapillary hemoglobin-oxygenation in human skin by EMPHO II,” SPIE 2979, 378–389 (1997).
[Crossref]

K. H. Frank, M. Kessler, K. Appelbaum, and W. Dummler, “The Erlangen micro-lightguide spectrometer EMHO I,” Phys.Med. Biol. 34, 1883–1900 (1989).
[Crossref] [PubMed]

Kobayashi, M.

M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tunazawa, “Optical imaging of hemoglobin distribution in human skin,” in Photon Migration, Optical Coherence Tomography, and Microscopy, Stefan Anderson-Engels and Michael Kaschke, Editor, Proc. SPIE4431, (now printed)

Konishi, I.

M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tunazawa, “Optical imaging of hemoglobin distribution in human skin,” in Photon Migration, Optical Coherence Tomography, and Microscopy, Stefan Anderson-Engels and Michael Kaschke, Editor, Proc. SPIE4431, (now printed)

Krug, A.

Y. Kakihana, M. Kessler, D. Alexandre, J, and A. Krug, “Stable and reliable measurement of intracapillary hemoglobin-oxygenation in human skin by EMPHO II,” SPIE 2979, 378–389 (1997).
[Crossref]

M. D,

R. Rox Anderson, B. S., John A. Parrish, and M. D., “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref]

Masuda, Y.

M. Shimada, Y. Masuda, M. Y. Yamada, M. Itoh, M. Takahashi, and T. Yatagai, “Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law,” Optical Review 7, 348–352 (2000).
[Crossref]

Matcher, S.J.

I. V. Meglinsky and S.J. Matcher, “Modelling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput. 39, 44–50 (2001).
[Crossref] [PubMed]

I. V. Meglinsky and S.J. Matcher, “Analysis of reflectance spectra for skin oxygenation measurements,” in Controlling of the Optical Properties, V. V. Tuchin and J. Lademann, Editors, Proc. SPIE4162, 46–53 (2000).

McCollum, P. T.

G. B. Hanna, D. J. Newton, D. K. Harrison, J. J. F. Belch, and P. T. McCollum, “Use of lightguide spectrophotometry to quantify skin oxygenation in a variable model of venous hypertension,” Br. J. Surg. 82, 1352–1356 (1995).
[Crossref] [PubMed]

Meeuwsen-van der Roest, W. P.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin”, CLIN. CHEM. 37, 1633–1638 (1991).
[PubMed]

Meglinsky, I. V.

I. V. Meglinsky and S.J. Matcher, “Modelling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput. 39, 44–50 (2001).
[Crossref] [PubMed]

I. V. Meglinsky and S.J. Matcher, “Analysis of reflectance spectra for skin oxygenation measurements,” in Controlling of the Optical Properties, V. V. Tuchin and J. Lademann, Editors, Proc. SPIE4162, 46–53 (2000).

Miyake, Y.

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of spectral absorbance image in human skin,” Optical Review 7, 479–482 (2000).
[Crossref]

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent -component analysis of skin color image,” J. Opt. Soc. Am. A 16, 2169–2176 (1999).
[Crossref]

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” IS&T/SID’s 8th Color Imaging Conference, Color Science, Systems and Appl. 81–84 (2000).

Newton, D. J.

G. B. Hanna, D. J. Newton, D. K. Harrison, J. J. F. Belch, and P. T. McCollum, “Use of lightguide spectrophotometry to quantify skin oxygenation in a variable model of venous hypertension,” Br. J. Surg. 82, 1352–1356 (1995).
[Crossref] [PubMed]

Oda, I.

M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tunazawa, “Optical imaging of hemoglobin distribution in human skin,” in Photon Migration, Optical Coherence Tomography, and Microscopy, Stefan Anderson-Engels and Michael Kaschke, Editor, Proc. SPIE4431, (now printed)

Parrish, John A.

R. Rox Anderson, B. S., John A. Parrish, and M. D., “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref]

San Wan, R. Rox Anderson, and John A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34, 493–499 (1981).
[PubMed]

Rox Anderson, R.

R. Rox Anderson, B. S., John A. Parrish, and M. D., “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref]

San Wan, R. Rox Anderson, and John A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34, 493–499 (1981).
[PubMed]

Sakauchi, N.

M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tunazawa, “Optical imaging of hemoglobin distribution in human skin,” in Photon Migration, Optical Coherence Tomography, and Microscopy, Stefan Anderson-Engels and Michael Kaschke, Editor, Proc. SPIE4431, (now printed)

Shimada, M.

M. Shimada, Y. Masuda, M. Y. Yamada, M. Itoh, M. Takahashi, and T. Yatagai, “Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law,” Optical Review 7, 348–352 (2000).
[Crossref]

Star, W.M.

M. J. CVanGemert, Steven L. Jacques, H. J. C. M. Sternborg, and W.M. Star, “Skin Optics,” IEEE Transactions On Biomedical Engineering 36, 1146–1154 (1989).
[Crossref]

Sternborg, H. J. C. M.

M. J. CVanGemert, Steven L. Jacques, H. J. C. M. Sternborg, and W.M. Star, “Skin Optics,” IEEE Transactions On Biomedical Engineering 36, 1146–1154 (1989).
[Crossref]

Takahashi, M.

M. Shimada, Y. Masuda, M. Y. Yamada, M. Itoh, M. Takahashi, and T. Yatagai, “Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law,” Optical Review 7, 348–352 (2000).
[Crossref]

Tsumura, N.

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of spectral absorbance image in human skin,” Optical Review 7, 479–482 (2000).
[Crossref]

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent -component analysis of skin color image,” J. Opt. Soc. Am. A 16, 2169–2176 (1999).
[Crossref]

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” IS&T/SID’s 8th Color Imaging Conference, Color Science, Systems and Appl. 81–84 (2000).

Tunazawa, Y.

M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tunazawa, “Optical imaging of hemoglobin distribution in human skin,” in Photon Migration, Optical Coherence Tomography, and Microscopy, Stefan Anderson-Engels and Michael Kaschke, Editor, Proc. SPIE4431, (now printed)

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Way, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Wan, San

San Wan, R. Rox Anderson, and John A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34, 493–499 (1981).
[PubMed]

Way, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Way, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Wilson, B. C.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1987).
[Crossref]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Way, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Yamada, M. Y.

M. Shimada, Y. Masuda, M. Y. Yamada, M. Itoh, M. Takahashi, and T. Yatagai, “Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law,” Optical Review 7, 348–352 (2000).
[Crossref]

Yatagai, T.

M. Shimada, Y. Masuda, M. Y. Yamada, M. Itoh, M. Takahashi, and T. Yatagai, “Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law,” Optical Review 7, 348–352 (2000).
[Crossref]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin”, CLIN. CHEM. 37, 1633–1638 (1991).
[PubMed]

Br. J. Surg. (1)

G. B. Hanna, D. J. Newton, D. K. Harrison, J. J. F. Belch, and P. T. McCollum, “Use of lightguide spectrophotometry to quantify skin oxygenation in a variable model of venous hypertension,” Br. J. Surg. 82, 1352–1356 (1995).
[Crossref] [PubMed]

CLIN. CHEM. (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin”, CLIN. CHEM. 37, 1633–1638 (1991).
[PubMed]

IEEE Transactions On Biomedical Engineering (1)

M. J. CVanGemert, Steven L. Jacques, H. J. C. M. Sternborg, and W.M. Star, “Skin Optics,” IEEE Transactions On Biomedical Engineering 36, 1146–1154 (1989).
[Crossref]

J. Invest. Dermatol. (1)

R. Rox Anderson, B. S., John A. Parrish, and M. D., “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[Crossref]

J. Opt. Soc. Am. A (1)

Med. Biol. Eng. Comput. (1)

I. V. Meglinsky and S.J. Matcher, “Modelling the sampling volume for skin blood oxygenation measurements,” Med. Biol. Eng. Comput. 39, 44–50 (2001).
[Crossref] [PubMed]

Med. Phys. (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1987).
[Crossref]

Optical Review (2)

N. Tsumura, H. Haneishi, and Y. Miyake, “Independent component analysis of spectral absorbance image in human skin,” Optical Review 7, 479–482 (2000).
[Crossref]

M. Shimada, Y. Masuda, M. Y. Yamada, M. Itoh, M. Takahashi, and T. Yatagai, “Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law,” Optical Review 7, 348–352 (2000).
[Crossref]

Photochem. Photobiol. (1)

San Wan, R. Rox Anderson, and John A. Parrish, “Analytical modeling for the optical properties of the skin with in vitro and in vivo applications,” Photochem. Photobiol. 34, 493–499 (1981).
[PubMed]

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Way, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Phys.Med. Biol. (1)

K. H. Frank, M. Kessler, K. Appelbaum, and W. Dummler, “The Erlangen micro-lightguide spectrometer EMHO I,” Phys.Med. Biol. 34, 1883–1900 (1989).
[Crossref] [PubMed]

SPIE (1)

Y. Kakihana, M. Kessler, D. Alexandre, J, and A. Krug, “Stable and reliable measurement of intracapillary hemoglobin-oxygenation in human skin by EMPHO II,” SPIE 2979, 378–389 (1997).
[Crossref]

Other (3)

I. V. Meglinsky and S.J. Matcher, “Analysis of reflectance spectra for skin oxygenation measurements,” in Controlling of the Optical Properties, V. V. Tuchin and J. Lademann, Editors, Proc. SPIE4162, 46–53 (2000).

M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tunazawa, “Optical imaging of hemoglobin distribution in human skin,” in Photon Migration, Optical Coherence Tomography, and Microscopy, Stefan Anderson-Engels and Michael Kaschke, Editor, Proc. SPIE4431, (now printed)

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” IS&T/SID’s 8th Color Imaging Conference, Color Science, Systems and Appl. 81–84 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1.
Fig.1.

Skin spectra of human forearm to be used for fitting. The curved lines are the measured spectra and the six points on each spectrum represent the absorbance points obtained by fitting. (a): Skin spectra of volunteer No.1 with varied states of hemoglobin. 1: at rest, 2: after heating, 3: after occlusion, 4: after release. (b): Skin spectra of three volunteers. 1: volunteer No.1 at rest, same as 1in Fig.1.(a), 5: volunteer No.2 at rest , 6: volunteer No.3 at rest.

Fig.2.
Fig.2.

Skin model with three layers used in the MCS.

Fig.3.
Fig.3.

Absorptivities of oxyHb and deoxyHb (mM-1·cm-1) after four times multiplied from the report of W. G. Zijlstra et al. 13) and absorptivities of melanin ((mg/mL)-1·cm-1)

Fig.4
Fig.4

Nonlinear relation obtained by MCS to be used for fitting at four wavelengths The dependence of the absorbance (Z-axis) on the absorption coefficient µa of the layer 2 (X-axis: mm-1) and on the concentration of melanin (Y-axis: mg/mL) for 512 nm, 557 nm, 581 nm and 619 nm. The scale of the X-axis for 619 nm is 1/10 of that for the other three wavelengths due to the weak absorption of hemoglobin at 619 nm. Points 1 to 6 on the figure correspond to the actual skin spectra by fitting; points 1 to 4: volunteer No.1, 1 (at rest), 2 (after heating), 3 (after occlusion), 4 (after release), point 5: volunteer No2 (at rest), point 6: volunteer No2 (at rest)

Fig.5.
Fig.5.

Distribution of Δ[oxyHb] in foot obtained with a new four-wavelength imager Six successive images of Δ[oxyHb] starting from just before the release of occlusion. Distribution of [oxyHb] just before occlusion is taken to be zero (green) as the reference A: just before the release of occlusion (at the end of occlusion period of 5 minutes), B: 6 sec after the release, C: after 13 sec, D: after 26 sec, E: after 40 sec, F: after 105 sec.

Fig.6.
Fig.6.

Comparison of MCS and MLB with two different mean path-lengths MLB result with the path-length for volunteer No.1 is referred to as MLB(1), and that with volunteer No.3 is referred to as MLB(2), since the MLB results depend on the path-length for respective subjects. The graphs A, B, C and D show the difference of three methods MCS, MLB(1) and MLB(2) in the changes in [oxyHb], [deoxyHb], [totalHb], and [melanin] respectively, calculated for the same original data. The numbers attached on the abscissa; 1:volunteer No.1 (at rest), 2: after heat, 3: after occlusion, 4: after release, 5: volunteer No.2, 6: volunteer No.3. The values at number 1 are zero, since the values of the volunteer No.1 (at rest) are taken as the reference.

Tables (3)

Tables Icon

Table 1 Coefficients of a cubic function AX 3+BX 2 Y+CXY 2+DY 3+EX 2+FXY+GY 2+HX+IY+J

Tables Icon

Table 2 Concentration of oxyHb, deoxyHb and melanin obtained by fitting. Related values (offset, totalHb and SO2) are also shown.

Tables Icon

Table 3 Mean path-length of layer1 (d melanin) and layer2 (d oxyHb, d deoxyHb) (a) Determined mean path-length (mm) of volunteer No.1

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

μ a = ln 10 · ( ε oxyHb · [ oxyHb ] + ε deoxyHb · [ deoxyHb ] ) 10 ,
Z = AX 3 + BX 2 Y + CXY 2 + DY 3 + EX 2 + FXY + GY 2 + HX + IY + J ,
S = i = 1 6 [ abs ( i ) Z ( i ) ] 2 ,
Δ Z = d oxyHb · ε oxyHb · Δ [ oxyHb ] + d deoxyHb · ε deoxyHb · Δ [ deoxyHb ] + d melanin · ε melanin · Δ [ melanin ] + Δ J ,
Δ Z = Z [ oxyHb ] Δ [ oxyHb ] + Z [ deoxyHb ] Δ [ deoxyHb ] + Z [ melanin ] Δ [ melanin ] + Δ J ,
Z [ oxyHb ] = Z X · X [ oxyHb ] = Z X · ln 10 10 ε oxyHb ,
Z [ deoxyHb ] = Z X · X [ deoxyHb ] = Z X · ln 10 10 ε deoxyHb ,
Z [ melanin ] = Z Y ,
d oxyHb = ( Z X ln 10 10 ) , d deoxyHb = ( Z X ln 10 10 ) , d melanin = ( Z Y 1 ε melanin ) .
Z X = 3 AX 2 + 2 BXY + CY 2 + 2 EX + FY + H ,
Z Y = BX 2 + 2 CXY + 3 DY 2 + FX + 2 GY + I .
( Δ Z ( 512 nm ) Δ Z ( 557 nm ) Δ Z ( 581 nm ) Δ Z ( 619 nm ) ) = ( 2.2581 2.2485 0.2763 1 2.7706 3.8677 0.1984 1 3.7557 2.6657 0.1717 1 0.4444 2.1528 0.1465 1 ) · ( Δ [ oxyHb ] Δ [ deoxyHb ] Δ [ melanin ] Δ J ) ,
( Δ [ oxyHb ] Δ [ deoxyHb ] Δ [ melanin ] Δ J ) = ( 0.0306 0.1185 0.4021 0.2529 0.2090 0.7097 0.3840 0.1166 8.2882 1.1331 5.3358 4.0855 0.7509 1.6411 1.4300 1.9621 ) · ( Δ Z ( 512 nm ) Δ Z ( 557 nm ) Δ Z ( 581 nm ) Δ Z ( 619 nm ) ) .
( Δ Z ( 512 nm ) Δ Z ( 557 nm ) Δ Z ( 581 nm ) Δ Z ( 619 nm ) ) = ( 1.7883 1.7807 0.2376 1 2.1802 3.0435 0.1707 1 3.0513 2.1657 0.1485 1 0.3695 1.7897 0.1315 1 ) · ( Δ [ oxyHb ] Δ [ deoxyHb ] Δ [ melanin ] Δ J ) ,
( Δ [ oxyHb ] Δ [ deoxyHb ] Δ [ melanin ] Δ J ) = ( 0.0236 0.1451 0.4834 0.3146 0.2694 0.9441 0.4949 0.1798 9.7175 2.0209 6.5057 5.2327 0.7871 1.9019 1.5627 2.1262 ) · ( Δ Z ( 512 nm ) Δ Z ( 557 nm ) Δ Z ( 581 nm ) Δ Z ( 619 nm ) ) .

Metrics