Abstract

We present several applications of microstructured optical fibers and study their modal characteristics by using Bragg gratings inscribed into photosensitive core regions designed into the air-silica microstructure. The unique characteristics revealed in these studies enable a number of functionalities including tunability and enhanced nonlinearity that provide a platform for fiber device applications. We discuss experimental and numerical tools that allow characterization of the modes of the fibers.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Dispersion control with use of long-period fiber gratings

D. B. Stegall and T. Erdogan
J. Opt. Soc. Am. A 17(2) 304-312 (2000)

Experimental and scalar beam propagation analysis of an air-silica microstructure fiber

C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, and R. S. Windeler
Opt. Express 7(3) 113-122 (2000)

References

  • View by:
  • |
  • |
  • |

  1. P.V. Kaiser and H.W. Astle, “Low-loss single-material fibers made from pure fused silica,” The Bell System Technical Journal,  53, 1021–1039 (1974),
  2. J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Optical Fiber Technology,  5, 305–330, (1999).
    [Crossref]
  3. J.C. Knight, T.A. Birks, P.S.J. Russell, and D.M. Atkin, “All-silica single mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549, (1996).
    [Crossref] [PubMed]
  4. J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Photonic crystals as optical fibers-physics and applications,” Optical Materials,  11, 143–151, (1999).
    [Crossref]
  5. R.S. Windeler, J.L. Wagener, and D.J. DiGiovanni, “Silica-air microstructured fibers: Properties and applications,” Optical Fiber Communications conference, San Diego (1999).
  6. T.A. Birks, J.C. Knight, and P.S.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963, (1997).
    [Crossref] [PubMed]
  7. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
    [Crossref] [PubMed]
  8. T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, and D.J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. and Tech. 12, 854–858, (2001).
    [Crossref]
  9. R. Holzwarth, M. Zimmermann, Th. Udem, T.W. Hansch, P. Russbuldt, K. Gabel, R. Poprawe, J.C. Knight, W.J. Wadsworth, and P.S.J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 17, 1376–1378, (2001).
    [Crossref]
  10. T.A. Birks, D. Mogilevstev, J.C. Knight, and P.S.J. Russell, “Dispersion Compensation Using Single-Material Fibers,” IEEE Phot. Tech. Lett,  11, 674–676, (1999).
    [Crossref]
  11. J.K. Ranka, R.S. Windeler, and A.J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798, (2000).
    [Crossref]
  12. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech.. 17, 1093–1102, (1999).
    [Crossref]
  13. J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Large mode area photonic crystals,” Opt. Lett. 25, 25–27, (1998).
  14. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Tech. 155, 1277–1294, (1997).
    [Crossref]
  15. R. Kashyap, Fiber Bragg gratings. 1st ed. ed.1999: Academic Press.
  16. B.J. Eggleton, P.S. Westbrook, C.A. White, C. Kerbage, R.S. Windeler, and G.L. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Tech.,  18, 1084–1100, (2000).
    [Crossref]
  17. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T.A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462, (1999).
    [Crossref]
  18. C. Kerbage, B.J. Eggleton, P.S. Westbrook, and R.S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Express,  7, 113–123, (2000), http://www.opticsexpress.org/oearchive/source/22997.htm
    [Crossref] [PubMed]
  19. P.S. Westbrook, B.J. Eggleton, R.S. Windeler, A. Hale, T.A. Strasser, and G.L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Phot. Tech. Lett. 12, 495–497, (2000).
    [Crossref]
  20. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, “Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber,” IEEE Phot. Tech. Lett. 13, 52–54, (2001).
    [Crossref]
  21. X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, and R.S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructured fiber,” Opt. Lett. 26, 358–360, (2000).
    [Crossref]
  22. C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, and B.J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” App. Phys. Lett. 79, 3191–3193, (2001).
    [Crossref]
  23. M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten, “Symmetry an degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490, (2001).
    [Crossref]

2001 (5)

T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, and D.J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. and Tech. 12, 854–858, (2001).
[Crossref]

R. Holzwarth, M. Zimmermann, Th. Udem, T.W. Hansch, P. Russbuldt, K. Gabel, R. Poprawe, J.C. Knight, W.J. Wadsworth, and P.S.J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 17, 1376–1378, (2001).
[Crossref]

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, “Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber,” IEEE Phot. Tech. Lett. 13, 52–54, (2001).
[Crossref]

C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, and B.J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” App. Phys. Lett. 79, 3191–3193, (2001).
[Crossref]

M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten, “Symmetry an degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490, (2001).
[Crossref]

2000 (5)

1999 (6)

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T.A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462, (1999).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech.. 17, 1093–1102, (1999).
[Crossref]

T.A. Birks, D. Mogilevstev, J.C. Knight, and P.S.J. Russell, “Dispersion Compensation Using Single-Material Fibers,” IEEE Phot. Tech. Lett,  11, 674–676, (1999).
[Crossref]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
[Crossref] [PubMed]

J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Optical Fiber Technology,  5, 305–330, (1999).
[Crossref]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Photonic crystals as optical fibers-physics and applications,” Optical Materials,  11, 143–151, (1999).
[Crossref]

1998 (1)

1997 (2)

1996 (1)

1974 (1)

P.V. Kaiser and H.W. Astle, “Low-loss single-material fibers made from pure fused silica,” The Bell System Technical Journal,  53, 1021–1039 (1974),

Allan, D.C.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
[Crossref] [PubMed]

Astle, H.W.

P.V. Kaiser and H.W. Astle, “Low-loss single-material fibers made from pure fused silica,” The Bell System Technical Journal,  53, 1021–1039 (1974),

Atkin, D.M.

Baggett, J.C.

T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, and D.J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. and Tech. 12, 854–858, (2001).
[Crossref]

Barkou, S.E.

J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Optical Fiber Technology,  5, 305–330, (1999).
[Crossref]

Belardi, W.

T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, and D.J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. and Tech. 12, 854–858, (2001).
[Crossref]

Bennet, P.J.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech.. 17, 1093–1102, (1999).
[Crossref]

Birks, T.A.

T.A. Birks, D. Mogilevstev, J.C. Knight, and P.S.J. Russell, “Dispersion Compensation Using Single-Material Fibers,” IEEE Phot. Tech. Lett,  11, 674–676, (1999).
[Crossref]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Photonic crystals as optical fibers-physics and applications,” Optical Materials,  11, 143–151, (1999).
[Crossref]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
[Crossref] [PubMed]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Large mode area photonic crystals,” Opt. Lett. 25, 25–27, (1998).

T.A. Birks, J.C. Knight, and P.S.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963, (1997).
[Crossref] [PubMed]

J.C. Knight, T.A. Birks, P.S.J. Russell, and D.M. Atkin, “All-silica single mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549, (1996).
[Crossref] [PubMed]

Bjarklev, A.

J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Optical Fiber Technology,  5, 305–330, (1999).
[Crossref]

Botten, L.C.

Broderick, N.G.R.

T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, and D.J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. and Tech. 12, 854–858, (2001).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech.. 17, 1093–1102, (1999).
[Crossref]

Broeng, J.

J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Optical Fiber Technology,  5, 305–330, (1999).
[Crossref]

Burdge, G.L.

B.J. Eggleton, P.S. Westbrook, C.A. White, C. Kerbage, R.S. Windeler, and G.L. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Tech.,  18, 1084–1100, (2000).
[Crossref]

P.S. Westbrook, B.J. Eggleton, R.S. Windeler, A. Hale, T.A. Strasser, and G.L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Phot. Tech. Lett. 12, 495–497, (2000).
[Crossref]

Chandalia, J. K.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, “Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber,” IEEE Phot. Tech. Lett. 13, 52–54, (2001).
[Crossref]

Chandalia, J.K.

Cregan, R.F.

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Photonic crystals as optical fibers-physics and applications,” Optical Materials,  11, 143–151, (1999).
[Crossref]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
[Crossref] [PubMed]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Large mode area photonic crystals,” Opt. Lett. 25, 25–27, (1998).

DiGiovanni, D.J.

R.S. Windeler, J.L. Wagener, and D.J. DiGiovanni, “Silica-air microstructured fibers: Properties and applications,” Optical Fiber Communications conference, San Diego (1999).

Eggleton, B. J.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, “Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber,” IEEE Phot. Tech. Lett. 13, 52–54, (2001).
[Crossref]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T.A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462, (1999).
[Crossref]

Eggleton, B.J.

C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, and B.J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” App. Phys. Lett. 79, 3191–3193, (2001).
[Crossref]

P.S. Westbrook, B.J. Eggleton, R.S. Windeler, A. Hale, T.A. Strasser, and G.L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Phot. Tech. Lett. 12, 495–497, (2000).
[Crossref]

B.J. Eggleton, P.S. Westbrook, C.A. White, C. Kerbage, R.S. Windeler, and G.L. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Tech.,  18, 1084–1100, (2000).
[Crossref]

X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, and R.S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructured fiber,” Opt. Lett. 26, 358–360, (2000).
[Crossref]

C. Kerbage, B.J. Eggleton, P.S. Westbrook, and R.S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Express,  7, 113–123, (2000), http://www.opticsexpress.org/oearchive/source/22997.htm
[Crossref] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Tech. 155, 1277–1294, (1997).
[Crossref]

Furusawa, K.

T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, and D.J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. and Tech. 12, 854–858, (2001).
[Crossref]

Gabel, K.

Hale, A.

C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, and B.J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” App. Phys. Lett. 79, 3191–3193, (2001).
[Crossref]

P.S. Westbrook, B.J. Eggleton, R.S. Windeler, A. Hale, T.A. Strasser, and G.L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Phot. Tech. Lett. 12, 495–497, (2000).
[Crossref]

Hansch, T.W.

Holzwarth, R.

Kaiser, P.V.

P.V. Kaiser and H.W. Astle, “Low-loss single-material fibers made from pure fused silica,” The Bell System Technical Journal,  53, 1021–1039 (1974),

Kashyap, R.

R. Kashyap, Fiber Bragg gratings. 1st ed. ed.1999: Academic Press.

Kerbage, C.

C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, and B.J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” App. Phys. Lett. 79, 3191–3193, (2001).
[Crossref]

B.J. Eggleton, P.S. Westbrook, C.A. White, C. Kerbage, R.S. Windeler, and G.L. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Tech.,  18, 1084–1100, (2000).
[Crossref]

C. Kerbage, B.J. Eggleton, P.S. Westbrook, and R.S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Express,  7, 113–123, (2000), http://www.opticsexpress.org/oearchive/source/22997.htm
[Crossref] [PubMed]

Knight, J.C.

R. Holzwarth, M. Zimmermann, Th. Udem, T.W. Hansch, P. Russbuldt, K. Gabel, R. Poprawe, J.C. Knight, W.J. Wadsworth, and P.S.J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 17, 1376–1378, (2001).
[Crossref]

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
[Crossref] [PubMed]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Photonic crystals as optical fibers-physics and applications,” Optical Materials,  11, 143–151, (1999).
[Crossref]

T.A. Birks, D. Mogilevstev, J.C. Knight, and P.S.J. Russell, “Dispersion Compensation Using Single-Material Fibers,” IEEE Phot. Tech. Lett,  11, 674–676, (1999).
[Crossref]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Large mode area photonic crystals,” Opt. Lett. 25, 25–27, (1998).

T.A. Birks, J.C. Knight, and P.S.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963, (1997).
[Crossref] [PubMed]

J.C. Knight, T.A. Birks, P.S.J. Russell, and D.M. Atkin, “All-silica single mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549, (1996).
[Crossref] [PubMed]

Knox, W.H.

Kosin ski, S. G.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, “Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber,” IEEE Phot. Tech. Lett. 13, 52–54, (2001).
[Crossref]

Kosinski, S.G.

Liu, X.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, “Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber,” IEEE Phot. Tech. Lett. 13, 52–54, (2001).
[Crossref]

X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, and R.S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructured fiber,” Opt. Lett. 26, 358–360, (2000).
[Crossref]

Mangan, B.J.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
[Crossref] [PubMed]

Martijn de Sterke, C.

McPhedran, R.C.

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Optical Fiber Technology,  5, 305–330, (1999).
[Crossref]

T.A. Birks, D. Mogilevstev, J.C. Knight, and P.S.J. Russell, “Dispersion Compensation Using Single-Material Fibers,” IEEE Phot. Tech. Lett,  11, 674–676, (1999).
[Crossref]

Monro, T.M.

T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, and D.J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. and Tech. 12, 854–858, (2001).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech.. 17, 1093–1102, (1999).
[Crossref]

Poprawe, R.

Ranka, J.K.

Richardson, D.J.

T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, and D.J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. and Tech. 12, 854–858, (2001).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech.. 17, 1093–1102, (1999).
[Crossref]

Roberts, P.J.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
[Crossref] [PubMed]

Russbuldt, P.

Russell, P. S. J.

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
[Crossref] [PubMed]

Russell, P.S.J.

Sandro, J.P.

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Photonic crystals as optical fibers-physics and applications,” Optical Materials,  11, 143–151, (1999).
[Crossref]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Large mode area photonic crystals,” Opt. Lett. 25, 25–27, (1998).

Spalter, S.

Steel, M.J.

Stentz, A.J.

Strasser, T.A.

P.S. Westbrook, B.J. Eggleton, R.S. Windeler, A. Hale, T.A. Strasser, and G.L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Phot. Tech. Lett. 12, 495–497, (2000).
[Crossref]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T.A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462, (1999).
[Crossref]

Udem, Th.

Wadsworth, W.J.

Wagener, J.L.

R.S. Windeler, J.L. Wagener, and D.J. DiGiovanni, “Silica-air microstructured fibers: Properties and applications,” Optical Fiber Communications conference, San Diego (1999).

Westbrook, P. S.

Westbrook, P.S.

C. Kerbage, B.J. Eggleton, P.S. Westbrook, and R.S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Express,  7, 113–123, (2000), http://www.opticsexpress.org/oearchive/source/22997.htm
[Crossref] [PubMed]

B.J. Eggleton, P.S. Westbrook, C.A. White, C. Kerbage, R.S. Windeler, and G.L. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Tech.,  18, 1084–1100, (2000).
[Crossref]

P.S. Westbrook, B.J. Eggleton, R.S. Windeler, A. Hale, T.A. Strasser, and G.L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Phot. Tech. Lett. 12, 495–497, (2000).
[Crossref]

White, C.A.

B.J. Eggleton, P.S. Westbrook, C.A. White, C. Kerbage, R.S. Windeler, and G.L. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Tech.,  18, 1084–1100, (2000).
[Crossref]

White, T.P.

Windeler, R. S.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, “Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber,” IEEE Phot. Tech. Lett. 13, 52–54, (2001).
[Crossref]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T.A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462, (1999).
[Crossref]

Windeler, R.S.

C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, and B.J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” App. Phys. Lett. 79, 3191–3193, (2001).
[Crossref]

J.K. Ranka, R.S. Windeler, and A.J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798, (2000).
[Crossref]

B.J. Eggleton, P.S. Westbrook, C.A. White, C. Kerbage, R.S. Windeler, and G.L. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Tech.,  18, 1084–1100, (2000).
[Crossref]

P.S. Westbrook, B.J. Eggleton, R.S. Windeler, A. Hale, T.A. Strasser, and G.L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Phot. Tech. Lett. 12, 495–497, (2000).
[Crossref]

X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, and R.S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructured fiber,” Opt. Lett. 26, 358–360, (2000).
[Crossref]

C. Kerbage, B.J. Eggleton, P.S. Westbrook, and R.S. Windeler, “Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,” Opt. Express,  7, 113–123, (2000), http://www.opticsexpress.org/oearchive/source/22997.htm
[Crossref] [PubMed]

R.S. Windeler, J.L. Wagener, and D.J. DiGiovanni, “Silica-air microstructured fibers: Properties and applications,” Optical Fiber Communications conference, San Diego (1999).

Xu, C.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, “Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber,” IEEE Phot. Tech. Lett. 13, 52–54, (2001).
[Crossref]

X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, and R.S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructured fiber,” Opt. Lett. 26, 358–360, (2000).
[Crossref]

Yablon, A.

C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, and B.J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” App. Phys. Lett. 79, 3191–3193, (2001).
[Crossref]

Zimmermann, M.

App. Phys. Lett. (1)

C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, and B.J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” App. Phys. Lett. 79, 3191–3193, (2001).
[Crossref]

IEEE Phot. Tech. Lett (1)

T.A. Birks, D. Mogilevstev, J.C. Knight, and P.S.J. Russell, “Dispersion Compensation Using Single-Material Fibers,” IEEE Phot. Tech. Lett,  11, 674–676, (1999).
[Crossref]

IEEE Phot. Tech. Lett. (2)

P.S. Westbrook, B.J. Eggleton, R.S. Windeler, A. Hale, T.A. Strasser, and G.L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Phot. Tech. Lett. 12, 495–497, (2000).
[Crossref]

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, “Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber,” IEEE Phot. Tech. Lett. 13, 52–54, (2001).
[Crossref]

J. Lightwave Tech. (2)

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Tech. 155, 1277–1294, (1997).
[Crossref]

B.J. Eggleton, P.S. Westbrook, C.A. White, C. Kerbage, R.S. Windeler, and G.L. Burdge, “Cladding mode resonances in air-silica microstructure fiber,” J. Lightwave Tech.,  18, 1084–1100, (2000).
[Crossref]

J. Lightwave Tech.. (1)

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech.. 17, 1093–1102, (1999).
[Crossref]

Meas. Sci. and Tech. (1)

T.M. Monro, W. Belardi, K. Furusawa, J.C. Baggett, N.G.R. Broderick, and D.J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. and Tech. 12, 854–858, (2001).
[Crossref]

Opt. Express (1)

Opt. Lett. (8)

X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, and R.S. Windeler, “Soliton self-frequency shift in a tapered air-silica microstructured fiber,” Opt. Lett. 26, 358–360, (2000).
[Crossref]

M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten, “Symmetry an degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490, (2001).
[Crossref]

R. Holzwarth, M. Zimmermann, Th. Udem, T.W. Hansch, P. Russbuldt, K. Gabel, R. Poprawe, J.C. Knight, W.J. Wadsworth, and P.S.J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 17, 1376–1378, (2001).
[Crossref]

T.A. Birks, J.C. Knight, and P.S.J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963, (1997).
[Crossref] [PubMed]

J.C. Knight, T.A. Birks, P.S.J. Russell, and D.M. Atkin, “All-silica single mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549, (1996).
[Crossref] [PubMed]

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Large mode area photonic crystals,” Opt. Lett. 25, 25–27, (1998).

J.K. Ranka, R.S. Windeler, and A.J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798, (2000).
[Crossref]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T.A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462, (1999).
[Crossref]

Optical Fiber Technology (1)

J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguides,” Optical Fiber Technology,  5, 305–330, (1999).
[Crossref]

Optical Materials (1)

J.C. Knight, T.A. Birks, R.F. Cregan, P.S.J. Russell, and J.P. Sandro, “Photonic crystals as optical fibers-physics and applications,” Optical Materials,  11, 143–151, (1999).
[Crossref]

Science (1)

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P. S. J. Russell, P.J. Roberts, and D.C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science,  285, 1537–1539, (1999).
[Crossref] [PubMed]

The Bell System Technical Journal (1)

P.V. Kaiser and H.W. Astle, “Low-loss single-material fibers made from pure fused silica,” The Bell System Technical Journal,  53, 1021–1039 (1974),

Other (2)

R.S. Windeler, J.L. Wagener, and D.J. DiGiovanni, “Silica-air microstructured fibers: Properties and applications,” Optical Fiber Communications conference, San Diego (1999).

R. Kashyap, Fiber Bragg gratings. 1st ed. ed.1999: Academic Press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Historical outline of different MOFs (a) Air-silica MOF, Kaiser et al. (1974) (b) Photonic crystal MOF, Russell et al. (1996), (c) Photonic bandgap MOF, Cregan et al. (1999), and (d) Dispersion control MOF, Ranka et al. (1999). (e) Possible device applications based on MOFs.

Fig. 2.
Fig. 2.

SEMS and photographs of respective MOF (a) high delta MOF (b) photonic crystal MOF; (c) grapefruit MOF; (d) air-clad MOF.

Fig.3.
Fig.3.

(a) Typical transmission spectrum of FBG in standard fibers exhibiting short wavelength loss. Each dip in the transmission spectrum is associated with grating facilitated phase matching to a counter-propagating cladding mode. The inset shows a schematic of Bragg grating in the core of a conventional optical fiber. Fig. 3. (b) The corresponding transmission spectrum of LPG.

Fig. 4.
Fig. 4.

Launch mode field along MOF structure (a) the correlation function and (b) its Fourier transform revealing the effective indices of the modes.

Fig. 5.
Fig. 5.

Experimental setup used to characterize near field images for respective air-silica MOFs. Bragg grating selectively excited counter-propagating “cladding modes” which are imaged in the near field on the VIDECON camera.

Fig. 6.
Fig. 6.

(a) Measured transmission spectrum of FBG written in photonic crystal MOF (solid line), calculated modal spectrum (dashed line). Light form the near field images reflected off FBG when the tunable laser wavelength is tuned to: (ab 1549.196nm, corresponding to the resonance labeled “LP03”; and (c) 1546.990nm corresponding to the resonance labeled “LP 04”.

Fig. 7.
Fig. 7.

(a) Part of transmission spectrum of FBG written into the core of the grapefruit MOF (solid line) with the corresponding observed near field images of light reflected off FBG when the laser was tuned to (A) 1553.96nm (the LP01 mode); (B) 1552.39nm (LP 02); (C) 1550.84nm (LP03) mode; (D) 1547.82nm (LP04 mode); (E) 1547.36nm (LP05 mode); (F) 1535.82nm, and (b) calculated modal spectrum of the grapefruit MOF (dashed line) and its corresponding simulated modes.

Fig. 8.
Fig. 8.

(a) Transmission spectrum of FBG written into the core of the MOF (b) photo of the inner region and (c) schematic diagram

Fig. 9.
Fig. 9.

(a) Schemaitc drawing of material (polymer) infused in the air-holes of the MOF. (b) Picture showing material in the air-holes of the fiber. (c) Refractive indices of the polymer and silica dependence on temperature.

Fig. 10.
Fig. 10.

(a) Photo of hybrid polymer air-silica microstructured optical fiber and a schematic diagram (b) Spectrum of LPG in hybrid polymer-silica fiber at different temperatures

Fig. 11.
Fig. 11.

(a) Schematic of the tapered MOF to 10µm with calculated and observed cross-sectional intensity plots of the mode field at different points along the taper. (b) Packaged tapered MOF device.

Fig. 12.
Fig. 12.

(a) Dispersion and intensity plots along the taper calculated at wavelength 1.5 µm. (b) Group velocity dispersion as a function of wavelength for different diameters in the waist.

Fig. 13.
Fig. 13.

(a) Schematic diagram of the all-fiber variable attenuator device based on tapered MOF and (b) mode profile evolution along the fiber.

Fig. 14.
Fig. 14.

Index cross-sectional profile in the waist of the fiber (a) with no polymer and with polymer of index (b) lower (np=1.42), (c) same as (np=1.44) and (d) higher (np=1.5) than that of silica. The corresponding calculated intensity cross sectional mode profile are shown at (1) z=0 cm, (2) z=1cm and (3) z=2 cm along the length of the waist.

Fig. 15.
Fig. 15.

Transmission (output) of the tapered microstructure fiber plotted in dB scale as a function of temperature and refractive index at 1550 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ FBG , i = ( n co + n clad , i ) Λ FBG
λ LPG , i = ( n co n clad , i ) Λ LPG
λ LPG , i Λ LPG = Δ λ i Λ FBG
T i = 1 tanh 2 ( κ i L )
E ( x , y , z ) = i α i E i ( x , y ) e i β i z
P ( z ) = E ( x , y , 0 ) E * ( x , y , z ) dx dy
E ( x , y , 0 ) = Δ n ( x , y ) E core ( x , y )
α i = E i ( x , y ) Δ n ( x , y ) E core ( x , y ) dxdy ( λ π ) κ i

Metrics