Abstract

Hole-assisted lightguide fiber (HALF) is a microstructured fiber comprising a material index profile for waveguiding and air holes for modifying optical properties. Anomalous dispersion larger than those of the conventional fibers can be realized without severe degradation in optical loss, because of low power fraction in the holes and structural simplicity. We investigate into the causes of the loss of the fabricated HALFs, and show that a GeO2-doped core, in addition to the low power fraction, is desirable for low loss. The fabricated HALF exhibits a loss as low as 0.41 dB/km and a large anomalous dispersion of +35 ps/nm/km at 1550 nm wavelength.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Holey fibers with random cladding distributions

Tanya M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson
Opt. Lett. 25(4) 206-208 (2000)

Small-core silica holey fibers: nonlinearity and confinement loss trade-offs

Vittoria Finazzi, Tanya M. Monro, and David J. Richardson
J. Opt. Soc. Am. B 20(7) 1427-1436 (2003)

Characterization of microstructured optical fibers for wideband dispersion compensation

Federica Poli, Annamaria Cucinotta, Matteo Fuochi, Stefano Selleri, and Luca Vincetti
J. Opt. Soc. Am. A 20(10) 1958-1962 (2003)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres : an endless variety,” IEICE Trans. Electron. E84-C, 585–592, (2001).
  2. D. J. Richardson, T. M. Monro, and N. G. R. Broderick, “Holey fibres - a review of recent developments in theory, fabrication and experiment,” ECOC2000 4, 37–40, (2000).
  3. D. C. Allan, N. F. Borrelli, J. C. Fajardo, R. M. Fiacco, D. W. Hawtof, and J. A. West, International patent applicationWO 00/37974, (2000).
  4. H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” CLEO2001, CPD3, (2001).
  5. J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” ECOC2001, Th.A.2.2, (2001).
  6. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” OFC2001, PD5, (2001).
  7. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method,” ECOC2001, We.L.2.5, (2001).
  8. S. S. Walker, “Rapid modeling and estimation of total spectral loss in optical fibers,” J. Lightwave Technol. 4, 1125–1131, (1986).
    [Crossref]
  9. K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solid. 201, 177–198, (1996).
    [Crossref]
  10. M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8, 1536–1540, (1990).
    [Crossref]
  11. M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10, 539–543, (1992).
    [Crossref]

2001 (1)

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres : an endless variety,” IEICE Trans. Electron. E84-C, 585–592, (2001).

2000 (1)

D. J. Richardson, T. M. Monro, and N. G. R. Broderick, “Holey fibres - a review of recent developments in theory, fabrication and experiment,” ECOC2000 4, 37–40, (2000).

1996 (1)

K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solid. 201, 177–198, (1996).
[Crossref]

1992 (1)

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10, 539–543, (1992).
[Crossref]

1990 (1)

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8, 1536–1540, (1990).
[Crossref]

1986 (1)

S. S. Walker, “Rapid modeling and estimation of total spectral loss in optical fibers,” J. Lightwave Technol. 4, 1125–1131, (1986).
[Crossref]

Allan, D. C.

D. C. Allan, N. F. Borrelli, J. C. Fajardo, R. M. Fiacco, D. W. Hawtof, and J. A. West, International patent applicationWO 00/37974, (2000).

Birks, T. A.

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres : an endless variety,” IEICE Trans. Electron. E84-C, 585–592, (2001).

Borrelli, N. F.

D. C. Allan, N. F. Borrelli, J. C. Fajardo, R. M. Fiacco, D. W. Hawtof, and J. A. West, International patent applicationWO 00/37974, (2000).

Bosselaar, L.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8, 1536–1540, (1990).
[Crossref]

Bredol, M.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8, 1536–1540, (1990).
[Crossref]

Broderick, N. G. R.

D. J. Richardson, T. M. Monro, and N. G. R. Broderick, “Holey fibres - a review of recent developments in theory, fabrication and experiment,” ECOC2000 4, 37–40, (2000).

Davis, K. M.

K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solid. 201, 177–198, (1996).
[Crossref]

Fajardo, J. C.

D. C. Allan, N. F. Borrelli, J. C. Fajardo, R. M. Fiacco, D. W. Hawtof, and J. A. West, International patent applicationWO 00/37974, (2000).

Fiacco, R. M.

D. C. Allan, N. F. Borrelli, J. C. Fajardo, R. M. Fiacco, D. W. Hawtof, and J. A. West, International patent applicationWO 00/37974, (2000).

Fujita, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” CLEO2001, CPD3, (2001).

Gallagher, M. T.

J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” ECOC2001, Th.A.2.2, (2001).

Hasegawa, T.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” OFC2001, PD5, (2001).

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method,” ECOC2001, We.L.2.5, (2001).

Hawtof, D. W.

D. C. Allan, N. F. Borrelli, J. C. Fajardo, R. M. Fiacco, D. W. Hawtof, and J. A. West, International patent applicationWO 00/37974, (2000).

Hutjens, M.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8, 1536–1540, (1990).
[Crossref]

Kawanishi, S.

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” CLEO2001, CPD3, (2001).

Knight, J. C.

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres : an endless variety,” IEICE Trans. Electron. E84-C, 585–592, (2001).

Koshiba, M.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” OFC2001, PD5, (2001).

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method,” ECOC2001, We.L.2.5, (2001).

Kubota, H.

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” CLEO2001, CPD3, (2001).

Leers, D.

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8, 1536–1540, (1990).
[Crossref]

Mangan, B. J.

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres : an endless variety,” IEICE Trans. Electron. E84-C, 585–592, (2001).

Monro, T. M.

D. J. Richardson, T. M. Monro, and N. G. R. Broderick, “Holey fibres - a review of recent developments in theory, fabrication and experiment,” ECOC2000 4, 37–40, (2000).

Nakazawa, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” CLEO2001, CPD3, (2001).

Nishimura, M.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method,” ECOC2001, We.L.2.5, (2001).

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” OFC2001, PD5, (2001).

Ohashi, M.

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10, 539–543, (1992).
[Crossref]

Onishi, M.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” OFC2001, PD5, (2001).

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method,” ECOC2001, We.L.2.5, (2001).

Richardson, D. J.

D. J. Richardson, T. M. Monro, and N. G. R. Broderick, “Holey fibres - a review of recent developments in theory, fabrication and experiment,” ECOC2000 4, 37–40, (2000).

Russell, P. St. J.

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres : an endless variety,” IEICE Trans. Electron. E84-C, 585–592, (2001).

Sasaoka, E.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method,” ECOC2001, We.L.2.5, (2001).

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” OFC2001, PD5, (2001).

Shiraki, K.

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10, 539–543, (1992).
[Crossref]

Smith, C. M.

J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” ECOC2001, Th.A.2.2, (2001).

Suzuki, K.

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” CLEO2001, CPD3, (2001).

Tajima, K.

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10, 539–543, (1992).
[Crossref]

Tanaka, M.

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” CLEO2001, CPD3, (2001).

Tomozawa, M.

K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solid. 201, 177–198, (1996).
[Crossref]

Tsuji, Y.

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” OFC2001, PD5, (2001).

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method,” ECOC2001, We.L.2.5, (2001).

Venkataramam, N.

J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” ECOC2001, Th.A.2.2, (2001).

Walker, S. S.

S. S. Walker, “Rapid modeling and estimation of total spectral loss in optical fibers,” J. Lightwave Technol. 4, 1125–1131, (1986).
[Crossref]

West, J. A.

J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” ECOC2001, Th.A.2.2, (2001).

D. C. Allan, N. F. Borrelli, J. C. Fajardo, R. M. Fiacco, D. W. Hawtof, and J. A. West, International patent applicationWO 00/37974, (2000).

ECOC2000 (1)

D. J. Richardson, T. M. Monro, and N. G. R. Broderick, “Holey fibres - a review of recent developments in theory, fabrication and experiment,” ECOC2000 4, 37–40, (2000).

IEICE Trans. Electron. (1)

T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres : an endless variety,” IEICE Trans. Electron. E84-C, 585–592, (2001).

J. Lightwave Technol. (3)

S. S. Walker, “Rapid modeling and estimation of total spectral loss in optical fibers,” J. Lightwave Technol. 4, 1125–1131, (1986).
[Crossref]

M. Bredol, D. Leers, L. Bosselaar, and M. Hutjens, “Improved model for OH absorption in optical fibers,” J. Lightwave Technol. 8, 1536–1540, (1990).
[Crossref]

M. Ohashi, K. Shiraki, and K. Tajima, “Optical loss property of silica-based single-mode fibers,” J. Lightwave Technol. 10, 539–543, (1992).
[Crossref]

J. Non-Cryst. Solid. (1)

K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solid. 201, 177–198, (1996).
[Crossref]

Other (5)

D. C. Allan, N. F. Borrelli, J. C. Fajardo, R. M. Fiacco, D. W. Hawtof, and J. A. West, International patent applicationWO 00/37974, (2000).

H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, “Low-loss, 2km-long photonic crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band,” CLEO2001, CPD3, (2001).

J. A. West, N. Venkataramam, C. M. Smith, and M. T. Gallagher, “Photonic crystal fibers,” ECOC2001, Th.A.2.2, (2001).

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” OFC2001, PD5, (2001).

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method,” ECOC2001, We.L.2.5, (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic structure of hole-assisted lightguide fiber (HALF).

Fig. 2.
Fig. 2.

Dependence of properties of HALF on its structure. (a-c) : Structures for calculation. The relationships of (d) dispersion and (e) relative dispersion slope (RDS) to effective area. The calculation is performed with varying the dimensions within the range of single-mode operation. The left and right ends of the plots are the limits posed by the macrobend loss and the higher-order mode cut-off, respectively.

Fig. 3.
Fig. 3.

Structures of the fabricated HALFs.

Fig. 4.
Fig. 4.

Dependence of loss on core-cladding materials. Fiber (1): pure silica core, (2): GeO2-doped core.

Fig. 5.
Fig. 5.

Dependence of loss on the hole shape. Fiber (2): small holes, Fiber (3): large holes.

Tables (2)

Tables Icon

Table 1: Summary of the fabricated fibers.

Tables Icon

Table 2: Parameters for loss modeling [8].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = A λ 4 + B + α OH ( λ ) ,
α OH ( λ ) = Δ α OH · n = 1 6 a n exp [ 1 2 ( λ λ n σ n ) 2 ] ,

Metrics