Abstract

Using a vector Fresnel diffraction propagator we investigate the far-field distributions obtained from guided annular modes with different polarization states. Furthermore we demonstrate that a pure azimuthal polarization transforms into a mainly radial one in the propagation of annular beams with azimuthal mode number higher than 0. This property could enhance the performance of a laser metal-cutting system based on these kind of beams.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lapucci, F. Rossetti, and P. Burlamacchi, “Beam Properties of an R.F.-discharge annular CO2 laser,” Opt. Commun. 111, 290–296 (1994).
    [Crossref]
  2. A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998).
    [Crossref]
  3. U. Wittrock, H. Weber, and B. Heppich, “Inside pumped Nd:YAG tube laser,” Opt. Lett. 16, 1092–1094 (1991).
    [Crossref] [PubMed]
  4. P. Burlamacchi, R. Pratesi, and L. Ronchi, “Self-guiding flashlamp-pumped dye lasers,” Appl. Opt. 14, 79–93 (1975).
    [PubMed]
  5. T. Erdogan and D.G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. QE-28, 612–623, (1992).
    [Crossref]
  6. R.H. Jordan and D.G. Hall “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994).
    [Crossref] [PubMed]
  7. D.G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9–11, (1996).
    [Crossref] [PubMed]
  8. P. L. Greene and D.G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J.Opt.Soc.Am. A 15, 3020–3027, (1998).
    [Crossref]
  9. P. L. Greene and D.G. Hall, “Focal shift in vector beams,” Opt. Express 4, 411–419 (1999), http://www.opticsexpress.org/oearchive/source/9094.htm.
    [Crossref] [PubMed]
  10. M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227, (2000).
    [Crossref]
  11. K.S. Youngworth and T.G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 4, 77–87 (2000), http://www.opticsexpress.org/oearchive/source/22809.htm.
    [Crossref]
  12. V.G. Niziev and A.V. Nestorov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32, 1455–1461, (1999).
    [Crossref]
  13. A. Lapucci and M. Ciofini, “Extraction of high quality beams from narrow annular sources,” Appl. Opt. 38, 4552–4557, (1999).
    [Crossref]

2000 (2)

1999 (3)

1998 (2)

A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998).
[Crossref]

P. L. Greene and D.G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J.Opt.Soc.Am. A 15, 3020–3027, (1998).
[Crossref]

1996 (1)

1994 (2)

A. Lapucci, F. Rossetti, and P. Burlamacchi, “Beam Properties of an R.F.-discharge annular CO2 laser,” Opt. Commun. 111, 290–296 (1994).
[Crossref]

R.H. Jordan and D.G. Hall “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994).
[Crossref] [PubMed]

1992 (1)

T. Erdogan and D.G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. QE-28, 612–623, (1992).
[Crossref]

1991 (1)

1975 (1)

Brown, T.G.

Burlamacchi, P.

A. Lapucci, F. Rossetti, and P. Burlamacchi, “Beam Properties of an R.F.-discharge annular CO2 laser,” Opt. Commun. 111, 290–296 (1994).
[Crossref]

P. Burlamacchi, R. Pratesi, and L. Ronchi, “Self-guiding flashlamp-pumped dye lasers,” Appl. Opt. 14, 79–93 (1975).
[PubMed]

Ciofini, M.

M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227, (2000).
[Crossref]

A. Lapucci and M. Ciofini, “Extraction of high quality beams from narrow annular sources,” Appl. Opt. 38, 4552–4557, (1999).
[Crossref]

A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998).
[Crossref]

Di Fabrizio, E.

A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998).
[Crossref]

Erdogan, T.

T. Erdogan and D.G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. QE-28, 612–623, (1992).
[Crossref]

Gentili, M.

A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998).
[Crossref]

Greene, P. L.

P. L. Greene and D.G. Hall, “Focal shift in vector beams,” Opt. Express 4, 411–419 (1999), http://www.opticsexpress.org/oearchive/source/9094.htm.
[Crossref] [PubMed]

P. L. Greene and D.G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J.Opt.Soc.Am. A 15, 3020–3027, (1998).
[Crossref]

Hall, D.G.

Heppich, B.

Jordan, R.H.

Lapucci, A.

M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227, (2000).
[Crossref]

A. Lapucci and M. Ciofini, “Extraction of high quality beams from narrow annular sources,” Appl. Opt. 38, 4552–4557, (1999).
[Crossref]

A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998).
[Crossref]

A. Lapucci, F. Rossetti, and P. Burlamacchi, “Beam Properties of an R.F.-discharge annular CO2 laser,” Opt. Commun. 111, 290–296 (1994).
[Crossref]

Mascalchi, S.

A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998).
[Crossref]

Nestorov, A.V.

V.G. Niziev and A.V. Nestorov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32, 1455–1461, (1999).
[Crossref]

Niziev, V.G.

V.G. Niziev and A.V. Nestorov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32, 1455–1461, (1999).
[Crossref]

Pratesi, R.

Ronchi, L.

Rossetti, F.

A. Lapucci, F. Rossetti, and P. Burlamacchi, “Beam Properties of an R.F.-discharge annular CO2 laser,” Opt. Commun. 111, 290–296 (1994).
[Crossref]

Weber, H.

Wittrock, U.

Youngworth, K.S.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Lapucci, M. Ciofini, S. Mascalchi, E. Di Fabrizio, and M. Gentili, “Beam quality enhancement for an rf-excited annular CO2 laser,” Appl. Phys. Lett. 73, 2549–2551, (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Erdogan and D.G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. QE-28, 612–623, (1992).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227, (2000).
[Crossref]

J. Phys. D: Appl. Phys. (1)

V.G. Niziev and A.V. Nestorov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32, 1455–1461, (1999).
[Crossref]

J.Opt.Soc.Am. A (1)

P. L. Greene and D.G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J.Opt.Soc.Am. A 15, 3020–3027, (1998).
[Crossref]

Opt. Commun. (1)

A. Lapucci, F. Rossetti, and P. Burlamacchi, “Beam Properties of an R.F.-discharge annular CO2 laser,” Opt. Commun. 111, 290–296 (1994).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Supplementary Material (4)

» Media 1: MOV (828 KB)     
» Media 2: MOV (859 KB)     
» Media 3: MOV (817 KB)     
» Media 4: MOV (849 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Near- and Far-Field plots of LPB (first column) and APB (second column) corresponding to a mode with azimuthal number equal to four. Beam dimensions in the nearfield are 28 mm internal diameter, 32 mm outer diameter. The Far-field figure corresponds to a full angle of 13.25 mrad. (Near-Fields on the first row, Far-Fields on the second.)

Fig. 2.
Fig. 2.

Propagation movies of compressed LPB (left-hand column — Movie-1 (830 kb)) and APB (right-hand column— Movie-2 (860 kb)) of order 4. Beams are propagated for 6 m after collimation with a concave 12 m R.O.C. mirror. Beam dimensions in the near-field are 4 mm internal diameter, 32 mm outer diameter. Snapshots show the near-field (first row) and far-field (second row) intensity patterns of the two different beams.

Fig.3.
Fig.3.

Vector Plots of compressed beams having LP and AP on the initial planes. Beam dimensions in the near-field are 4 mm internal diameter, 32 mm outer diameter. The far-field figures correspond to a full angle of 3.2 mrad.

Fig. 4.
Fig. 4.

Propagation movies of compressed and phase-corrected LPB (left-hand column — Movie-3 (817 kb)) and APB (right-hand column— Movie-4 (850 kb)) of order 4. Beam dimensions and propagation distance are as in Fig.2. Only far-fields are shown in the snapshots (near-fields being equal to those in the first row of fig.2).

Metrics