Abstract

We investigated second harmonic generation with ultrahigh intensity femtosecond laser pulses from a terawatt Ti: sapphire laser system. Energy conversion efficiency of about 80 % for a type I potassium dideuterium phosphate crystal was obtained with 130 fs laser pulses at an intensity as high as 192 GW/cm2.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, H.Takuma, "100-TW, sub 20-fs Ti :Sapphire laser system operating at a 10 Hz repetition rate," Opt. Lett. 23, 1468-1470 (1998).
    [CrossRef]
  2. T. Guo, Ch. Spielmann, B. C. Walker, and C. P. J. Barty, " Generation of hard x rays by ultrafast terawatt lasers," Rev. Sci. Instrum. 72, 41-47 (2001)
    [CrossRef]
  3. P. Gibbon, "High-order harmonic generation in plasmas," IEEE J. Quantum Electron 33, 1915-1924 (1997).
    [CrossRef]
  4. P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, "Thermal response of metals to ultrashort-pulse laser excitation," Phys. Rev. Lett. 61, 2886-2889 (1988).
    [CrossRef] [PubMed]
  5. I. V. Tomov, R. Fedosejevs and A. A. Offenberger, "Up-conversion of subpicosecond light pulses," IEEE J. Quantum Electron. 18, 2048-2056 (1982).
    [CrossRef]
  6. R. C. Eckard and J. Reintjes, "Phase matching limitations of high efficiency second harmonic generation," IEEE J. Quantum Electron. 20, 1178-1187 (1984).
    [CrossRef]
  7. C. Y. Chien, G. Korn, J. S. Coe, J. Squier, G. Mourou and R.S. Craxton, "Highly efficient second-harmonic generation of ultraintense Nd : glass laser pulses," Opt. Lett. 20, 353-355(1995).
    [CrossRef] [PubMed]
  8. V. Krylov, A. Rebane, A. G.Kalintsev, H. Schwoerer and U. P. Wild, "Second-harmonic generation of amplified femtosecond Ti : sapphire laser pulses," Opt. Lett. 20, 198-200 (1995).
    [CrossRef] [PubMed]
  9. Y. Tamaki, M. Obara and K. Midorikawa, " Second harmonic generation from intense, 100-fs Ti Sapphire laser pulses in Potassium dihydrogen phosphate, Cesium lithium borate and ?-bariummetaborate," Jpn. J. Appl. Phys. 37, 4801-4805 (1998).
    [CrossRef]
  10. D. Neely , C. N. Danson, R. Allott, F. Amiranoff, J. L. Collier, A. E. Dangor, C. B. Edwards, P. Flintoff, P. Hatton, M. Harman, M. H. R. Hutchinson, Z. Najmudin, D. A. Pepler, I. N. Ross, M. Salvati and T. Winstone, "Frequency doubling of multi-terawatt picosecond pulses," Laser and Particle Beams 17, 281-286 (1999).
    [CrossRef]
  11. J. Queneuille, F. Druon, A. Maksimchuk, G. Cheriaux, G. Mourou and K. Nemoto, "Second-harmonic generation and wave-front correction of a terawatt laser system," Opt. Lett. 25, 508-510 (2000).
    [CrossRef]
  12. T. Ditmire, A. M. Rubenchik, D. Eimerl, and M. D. Perry, "Effects of cubic nonlinearity on frequency doubling of high-power laser pulses," J. Opt. Soc. Am. B 13, 649-655 (1996).
    [CrossRef]
  13. T. Harimoto, M. Aoyama, K. Yamakawa, and M. Yonemura, " Suppression of cubic nonlinearity in second-harmonic generation of ultrahigh intensity laser pulses by initial frequency chirp," Jpn. J. Appl. Phys. 41 (2002).
    [CrossRef]

Other (13)

K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, H.Takuma, "100-TW, sub 20-fs Ti :Sapphire laser system operating at a 10 Hz repetition rate," Opt. Lett. 23, 1468-1470 (1998).
[CrossRef]

T. Guo, Ch. Spielmann, B. C. Walker, and C. P. J. Barty, " Generation of hard x rays by ultrafast terawatt lasers," Rev. Sci. Instrum. 72, 41-47 (2001)
[CrossRef]

P. Gibbon, "High-order harmonic generation in plasmas," IEEE J. Quantum Electron 33, 1915-1924 (1997).
[CrossRef]

P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, "Thermal response of metals to ultrashort-pulse laser excitation," Phys. Rev. Lett. 61, 2886-2889 (1988).
[CrossRef] [PubMed]

I. V. Tomov, R. Fedosejevs and A. A. Offenberger, "Up-conversion of subpicosecond light pulses," IEEE J. Quantum Electron. 18, 2048-2056 (1982).
[CrossRef]

R. C. Eckard and J. Reintjes, "Phase matching limitations of high efficiency second harmonic generation," IEEE J. Quantum Electron. 20, 1178-1187 (1984).
[CrossRef]

C. Y. Chien, G. Korn, J. S. Coe, J. Squier, G. Mourou and R.S. Craxton, "Highly efficient second-harmonic generation of ultraintense Nd : glass laser pulses," Opt. Lett. 20, 353-355(1995).
[CrossRef] [PubMed]

V. Krylov, A. Rebane, A. G.Kalintsev, H. Schwoerer and U. P. Wild, "Second-harmonic generation of amplified femtosecond Ti : sapphire laser pulses," Opt. Lett. 20, 198-200 (1995).
[CrossRef] [PubMed]

Y. Tamaki, M. Obara and K. Midorikawa, " Second harmonic generation from intense, 100-fs Ti Sapphire laser pulses in Potassium dihydrogen phosphate, Cesium lithium borate and ?-bariummetaborate," Jpn. J. Appl. Phys. 37, 4801-4805 (1998).
[CrossRef]

D. Neely , C. N. Danson, R. Allott, F. Amiranoff, J. L. Collier, A. E. Dangor, C. B. Edwards, P. Flintoff, P. Hatton, M. Harman, M. H. R. Hutchinson, Z. Najmudin, D. A. Pepler, I. N. Ross, M. Salvati and T. Winstone, "Frequency doubling of multi-terawatt picosecond pulses," Laser and Particle Beams 17, 281-286 (1999).
[CrossRef]

J. Queneuille, F. Druon, A. Maksimchuk, G. Cheriaux, G. Mourou and K. Nemoto, "Second-harmonic generation and wave-front correction of a terawatt laser system," Opt. Lett. 25, 508-510 (2000).
[CrossRef]

T. Ditmire, A. M. Rubenchik, D. Eimerl, and M. D. Perry, "Effects of cubic nonlinearity on frequency doubling of high-power laser pulses," J. Opt. Soc. Am. B 13, 649-655 (1996).
[CrossRef]

T. Harimoto, M. Aoyama, K. Yamakawa, and M. Yonemura, " Suppression of cubic nonlinearity in second-harmonic generation of ultrahigh intensity laser pulses by initial frequency chirp," Jpn. J. Appl. Phys. 41 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig.1:
Fig.1:

Experimental setup for SHG with femtosecond laser pulses. SM: silver mirror, DM: dichroic mirror, PM1: power meter for SH laser pulses, L1: lens for SH laser pulses, C1: CCD camera for SH laser pulses, PM2: power meter for fundamental laser pulses, L2: lens for fundamental laser pulses, C2: CCD camera for fundamental laser pulses.

Fig. 2.
Fig. 2.

Experimental and numerical energy conversion efficiencies of SHG as a function of fundamental intensity. Circles indicate experimental results. The solid curve shows the numerical result where the calculation includes a phase shift due to the third-order susceptibility χ (3). The dot curve shows the numerical result of the SH pulse duration.

Fig.3:
Fig.3:

Measured spectra of second harmonic pulses. The solid curve and the dot curve show the SH spectrum at an intensities of the fundamental pulses as high as 219 GW/cm2 and 455 GW/cm2, respectively.

Fig.4:
Fig.4:

Experimental and numerical energy conversion efficiencies of SHG as a function of the fundamental intensity. Circles indicate experimental results. The solid and dot curves show the numerical results where the calculation includes a phase shift due to the third-order susceptibility χ (3) and a frequency chirp of 6.18×104 fs2/nm and 3.24×104 fs2/nm, respectively.

Metrics