Abstract

A special imaging instrument was developed which can acquire optical coherence tomography (OCT) en-face images from the eye fundus, and simultaneously a confocal image. Using this instrument we illustrate for the first time the application of en-face OCT imaging to produce topography and perform area and volume measurements of the optic nerve. The procedure is compared with the topography, area and volume measurements using a confocal scanning laser ophthalmoscope.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughes, and F. C. Delori,, “Confocal scanning laser ophthalmoscope,” Applied Optics,  26, 1492–1499 (1987).
    [CrossRef] [PubMed]
  2. W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” British J. Ophthalmology,  76, 470–474, (1992).
    [CrossRef]
  3. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Research,  36, 191–205 (1996).
    [CrossRef] [PubMed]
  4. B. R. Masters, “Three-dimensional confocal microscopy of the human optic nerve in vivo,” Opt. Express,  3, 356–359 (1998), http://epubs.osa.org/oearchive/source/6295.htm
    [CrossRef] [PubMed]
  5. Heidelberg Retina Tomograph, Operation Manual, (Heidelberg Engineering GmbH, Heidelberg, 1997).
  6. A. W. Dreher, P. C. Tso, and R. N. Weinreb, “Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner,” American J. Ophthalmology,  111, 221–229 (1994).
  7. F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance, and R. Gosine, “Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss,” J. Glaucoma,  4, 242–247 (1995).
    [CrossRef] [PubMed]
  8. D. U. Bartsch and W.R. Freeman, “Axial intensity distribution analysis of the human retina with a confocal scanning laser tomograph,” Exp. Eye Res.,  58, 161–173 (1994).
    [CrossRef] [PubMed]
  9. K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers, and G. K. Kriegsltein, “The cumulative normalised rim/disc area ratio curve,” Graefe’s Arch Clin Exp. Ophthalmol. 234227–231 (1996).
    [CrossRef]
  10. D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  11. J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.,  19, 590–592 (1994).
    [CrossRef]
  12. C. Puliafito, Optical coherence tomography of ocular diseases, (Thorofare, NJ, SLACK Inc., 1996).
  13. Data sheets of Humphrey Instruments, Optical Coherence Tomography, Humphrey Instruments, (2992 Alvarado St., San Leandro CA 94577, 1996).
  14. J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, and M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence tomography,” Ophthalmology, 103, 1889–1898 (1996).
  15. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Optics,  3, 12–20 (1998).
    [CrossRef]
  16. A. Gh. Podoleanu and D. A. Jackson, “Noise Analysis of a combined optical coherence tomography and confocal scanning ophthalmoscope,” Appl. Opt.,  38, 2116–2127 (1999).
    [CrossRef]
  17. A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express,  7, 292–298, (2000), http://www.opticsexpress.org/framestocv7n9.htm
    [CrossRef] [PubMed]
  18. R. N. Weinreb, Lusky, D-U Bartsch, and D. Morsman, “Effect of repetitive imaging on topographic measurements of the optic nerve head,”, Arch Ophthalmol.,  111, 636–638 (1993).
    [CrossRef] [PubMed]
  19. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine,  7, 502–507, (2001).
    [CrossRef] [PubMed]
  20. D.S. Chauhan and J. Marshall, “The Interpretation of Optical Coherence Tomography Images of the Retina,” Investigative Ophthalmology,  40, 2332–2342 (1999).
  21. C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun.,  154, 179–185, 1998.
    [CrossRef]
  22. R. H. Webb, “Scanning laser ophthalmoscope”, in Noninvasive diagnostic techniques in ophthalmology,B. R. Masters ed, (Springer-Verlag, New York, 1990), pp. 438–450.
    [CrossRef]
  23. American National Standard for the Safe Use of Lasers: ANSI Z 136.1, (Laser Institute of America, New York, NY, 1993).
  24. A. Gh. Podoleanu, J. A. Rogers, and D. A. Jackson, “OCT En-face Images from the retina with adjustable depth resolution in real time,” IEEE Journal of Selected Topics in Quantum Electron.,  5, 1176–1184 (1999).
    [CrossRef]
  25. F. C. Delori and K. P. Pflibsen, ‘Spectral reflectance of the human ocular fundus,” Appl. Opt.,  28, 1061–1077 (1989),.
    [CrossRef] [PubMed]
  26. J. van de Kraats, T.T.J.M. Berendschot, D. van Norren, and D, “The pathways of light measured in fundus reflectometry,” Vision Res,  35, 2229–2247 (1996).
    [CrossRef]
  27. AE Elsner, L Moraes, and E Beausencourt, et al., “Scanning laser reflectometry of retinal and subretinal tissues,” Opt. Express,  6, 243–250 (2000) http://www.opticsexpress.org/oearchive/source/21766.htm
    [CrossRef] [PubMed]
  28. A.E. Elsner, M. Miura, S.A. Burns, E. Beausencourt, C. Kunze, L.M. Kelley, J.P. Walker, G.L. Wing, P.A. Raskauskas, D.C. Fletcher, Q. Zhou, and A.W. Dreher, “Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration,” Opt. Express,  7, 95–106 (2001) http://www.opticsexpress.org/oearchive/source/22805.htm
    [CrossRef]
  29. E. Beausencourt, A. E. Elsner, M. E. Hartnett, and C. L. Trempe, “Quantitative analysis of macular holes with scanning laser tomography,” Ophthalmology,  104, 2018–2029 (1997).
    [PubMed]
  30. C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner, and D. McLeod, “Objective morphological assessment of macular hole surgery by scanning laser tomography,” British KJ. Ophthalmol. 81, 107–116 (1997).
    [CrossRef]

2001 (2)

2000 (2)

1999 (3)

D.S. Chauhan and J. Marshall, “The Interpretation of Optical Coherence Tomography Images of the Retina,” Investigative Ophthalmology,  40, 2332–2342 (1999).

A. Gh. Podoleanu and D. A. Jackson, “Noise Analysis of a combined optical coherence tomography and confocal scanning ophthalmoscope,” Appl. Opt.,  38, 2116–2127 (1999).
[CrossRef]

A. Gh. Podoleanu, J. A. Rogers, and D. A. Jackson, “OCT En-face Images from the retina with adjustable depth resolution in real time,” IEEE Journal of Selected Topics in Quantum Electron.,  5, 1176–1184 (1999).
[CrossRef]

1998 (3)

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Optics,  3, 12–20 (1998).
[CrossRef]

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun.,  154, 179–185, 1998.
[CrossRef]

B. R. Masters, “Three-dimensional confocal microscopy of the human optic nerve in vivo,” Opt. Express,  3, 356–359 (1998), http://epubs.osa.org/oearchive/source/6295.htm
[CrossRef] [PubMed]

1997 (2)

E. Beausencourt, A. E. Elsner, M. E. Hartnett, and C. L. Trempe, “Quantitative analysis of macular holes with scanning laser tomography,” Ophthalmology,  104, 2018–2029 (1997).
[PubMed]

C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner, and D. McLeod, “Objective morphological assessment of macular hole surgery by scanning laser tomography,” British KJ. Ophthalmol. 81, 107–116 (1997).
[CrossRef]

1996 (3)

J. van de Kraats, T.T.J.M. Berendschot, D. van Norren, and D, “The pathways of light measured in fundus reflectometry,” Vision Res,  35, 2229–2247 (1996).
[CrossRef]

K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers, and G. K. Kriegsltein, “The cumulative normalised rim/disc area ratio curve,” Graefe’s Arch Clin Exp. Ophthalmol. 234227–231 (1996).
[CrossRef]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Research,  36, 191–205 (1996).
[CrossRef] [PubMed]

1995 (1)

F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance, and R. Gosine, “Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss,” J. Glaucoma,  4, 242–247 (1995).
[CrossRef] [PubMed]

1994 (3)

D. U. Bartsch and W.R. Freeman, “Axial intensity distribution analysis of the human retina with a confocal scanning laser tomograph,” Exp. Eye Res.,  58, 161–173 (1994).
[CrossRef] [PubMed]

A. W. Dreher, P. C. Tso, and R. N. Weinreb, “Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner,” American J. Ophthalmology,  111, 221–229 (1994).

J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.,  19, 590–592 (1994).
[CrossRef]

1993 (1)

R. N. Weinreb, Lusky, D-U Bartsch, and D. Morsman, “Effect of repetitive imaging on topographic measurements of the optic nerve head,”, Arch Ophthalmol.,  111, 636–638 (1993).
[CrossRef] [PubMed]

1992 (1)

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” British J. Ophthalmology,  76, 470–474, (1992).
[CrossRef]

1991 (1)

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

R. H. Webb, G. W. Hughes, and F. C. Delori,, “Confocal scanning laser ophthalmoscope,” Applied Optics,  26, 1492–1499 (1987).
[CrossRef] [PubMed]

Bartsch, D. U.

D. U. Bartsch and W.R. Freeman, “Axial intensity distribution analysis of the human retina with a confocal scanning laser tomograph,” Exp. Eye Res.,  58, 161–173 (1994).
[CrossRef] [PubMed]

Bartsch, D-U

R. N. Weinreb, Lusky, D-U Bartsch, and D. Morsman, “Effect of repetitive imaging on topographic measurements of the optic nerve head,”, Arch Ophthalmol.,  111, 636–638 (1993).
[CrossRef] [PubMed]

Bartz-Schmidt, K. U.

K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers, and G. K. Kriegsltein, “The cumulative normalised rim/disc area ratio curve,” Graefe’s Arch Clin Exp. Ophthalmol. 234227–231 (1996).
[CrossRef]

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun.,  154, 179–185, 1998.
[CrossRef]

Beausencourt, E

Beausencourt, E.

Berendschot, T.T.J.M.

J. van de Kraats, T.T.J.M. Berendschot, D. van Norren, and D, “The pathways of light measured in fundus reflectometry,” Vision Res,  35, 2229–2247 (1996).
[CrossRef]

Bird, A. C.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” British J. Ophthalmology,  76, 470–474, (1992).
[CrossRef]

Brahma, A. K.

C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner, and D. McLeod, “Objective morphological assessment of macular hole surgery by scanning laser tomography,” British KJ. Ophthalmol. 81, 107–116 (1997).
[CrossRef]

Burns, S. A.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Research,  36, 191–205 (1996).
[CrossRef] [PubMed]

Burns, S.A.

Chang, W.

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Charles, S. J.

C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner, and D. McLeod, “Objective morphological assessment of macular hole surgery by scanning laser tomography,” British KJ. Ophthalmol. 81, 107–116 (1997).
[CrossRef]

Chauhan, D.S.

D.S. Chauhan and J. Marshall, “The Interpretation of Optical Coherence Tomography Images of the Retina,” Investigative Ophthalmology,  40, 2332–2342 (1999).

D,

J. van de Kraats, T.T.J.M. Berendschot, D. van Norren, and D, “The pathways of light measured in fundus reflectometry,” Vision Res,  35, 2229–2247 (1996).
[CrossRef]

Delori, F. C.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Research,  36, 191–205 (1996).
[CrossRef] [PubMed]

F. C. Delori and K. P. Pflibsen, ‘Spectral reflectance of the human ocular fundus,” Appl. Opt.,  28, 1061–1077 (1989),.
[CrossRef] [PubMed]

R. H. Webb, G. W. Hughes, and F. C. Delori,, “Confocal scanning laser ophthalmoscope,” Applied Optics,  26, 1492–1499 (1987).
[CrossRef] [PubMed]

Dobre, G. M.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Optics,  3, 12–20 (1998).
[CrossRef]

Drance, S. M.

F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance, and R. Gosine, “Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss,” J. Glaucoma,  4, 242–247 (1995).
[CrossRef] [PubMed]

Dreher, A. W.

A. W. Dreher, P. C. Tso, and R. N. Weinreb, “Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner,” American J. Ophthalmology,  111, 221–229 (1994).

Dreher, A.W.

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine,  7, 502–507, (2001).
[CrossRef] [PubMed]

Dunne, S.

Elsner, A. E.

E. Beausencourt, A. E. Elsner, M. E. Hartnett, and C. L. Trempe, “Quantitative analysis of macular holes with scanning laser tomography,” Ophthalmology,  104, 2018–2029 (1997).
[PubMed]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Research,  36, 191–205 (1996).
[CrossRef] [PubMed]

Elsner, A.E.

Elsner, AE

Esser, P.

K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers, and G. K. Kriegsltein, “The cumulative normalised rim/disc area ratio curve,” Graefe’s Arch Clin Exp. Ophthalmol. 234227–231 (1996).
[CrossRef]

Fercher, A. F.

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun.,  154, 179–185, 1998.
[CrossRef]

Fitzke, F.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Optics,  3, 12–20 (1998).
[CrossRef]

Fitzke, F. W.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” British J. Ophthalmology,  76, 470–474, (1992).
[CrossRef]

Flanagan, J. G.

C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner, and D. McLeod, “Objective morphological assessment of macular hole surgery by scanning laser tomography,” British KJ. Ophthalmol. 81, 107–116 (1997).
[CrossRef]

Fletcher, D.C.

Flotte, T.

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Freeman, W.R.

D. U. Bartsch and W.R. Freeman, “Axial intensity distribution analysis of the human retina with a confocal scanning laser tomograph,” Exp. Eye Res.,  58, 161–173 (1994).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine,  7, 502–507, (2001).
[CrossRef] [PubMed]

J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.,  19, 590–592 (1994).
[CrossRef]

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine,  7, 502–507, (2001).
[CrossRef] [PubMed]

Gosine, R.

F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance, and R. Gosine, “Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss,” J. Glaucoma,  4, 242–247 (1995).
[CrossRef] [PubMed]

Graham, S. L.

F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance, and R. Gosine, “Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss,” J. Glaucoma,  4, 242–247 (1995).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hartnett, M. E.

E. Beausencourt, A. E. Elsner, M. E. Hartnett, and C. L. Trempe, “Quantitative analysis of macular holes with scanning laser tomography,” Ophthalmology,  104, 2018–2029 (1997).
[PubMed]

Hee, M. R.

J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.,  19, 590–592 (1994).
[CrossRef]

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, and M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence tomography,” Ophthalmology, 103, 1889–1898 (1996).

Hertzmark, E.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, and M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence tomography,” Ophthalmology, 103, 1889–1898 (1996).

Hilgers, R-D.

K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers, and G. K. Kriegsltein, “The cumulative normalised rim/disc area ratio curve,” Graefe’s Arch Clin Exp. Ophthalmol. 234227–231 (1996).
[CrossRef]

Hitzenberger, C. K.

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun.,  154, 179–185, 1998.
[CrossRef]

Huang, D.

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hudson, C.

C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner, and D. McLeod, “Objective morphological assessment of macular hole surgery by scanning laser tomography,” British KJ. Ophthalmol. 81, 107–116 (1997).
[CrossRef]

Hughes, G. W.

R. H. Webb, G. W. Hughes, and F. C. Delori,, “Confocal scanning laser ophthalmoscope,” Applied Optics,  26, 1492–1499 (1987).
[CrossRef] [PubMed]

Izaat, J. A.

Jackson, D. A.

A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express,  7, 292–298, (2000), http://www.opticsexpress.org/framestocv7n9.htm
[CrossRef] [PubMed]

A. Gh. Podoleanu and D. A. Jackson, “Noise Analysis of a combined optical coherence tomography and confocal scanning ophthalmoscope,” Appl. Opt.,  38, 2116–2127 (1999).
[CrossRef]

A. Gh. Podoleanu, J. A. Rogers, and D. A. Jackson, “OCT En-face Images from the retina with adjustable depth resolution in real time,” IEEE Journal of Selected Topics in Quantum Electron.,  5, 1176–1184 (1999).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Optics,  3, 12–20 (1998).
[CrossRef]

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine,  7, 502–507, (2001).
[CrossRef] [PubMed]

Kelley, L.M.

Kriegsltein, G. K.

K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers, and G. K. Kriegsltein, “The cumulative normalised rim/disc area ratio curve,” Graefe’s Arch Clin Exp. Ophthalmol. 234227–231 (1996).
[CrossRef]

Kunze, C.

Lin, C. P.

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lusky,

R. N. Weinreb, Lusky, D-U Bartsch, and D. Morsman, “Effect of repetitive imaging on topographic measurements of the optic nerve head,”, Arch Ophthalmol.,  111, 636–638 (1993).
[CrossRef] [PubMed]

Marshall, J.

D.S. Chauhan and J. Marshall, “The Interpretation of Optical Coherence Tomography Images of the Retina,” Investigative Ophthalmology,  40, 2332–2342 (1999).

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” British J. Ophthalmology,  76, 470–474, (1992).
[CrossRef]

Masters, B. R.

B. R. Masters, “Three-dimensional confocal microscopy of the human optic nerve in vivo,” Opt. Express,  3, 356–359 (1998), http://epubs.osa.org/oearchive/source/6295.htm
[CrossRef] [PubMed]

R. H. Webb, “Scanning laser ophthalmoscope”, in Noninvasive diagnostic techniques in ophthalmology,B. R. Masters ed, (Springer-Verlag, New York, 1990), pp. 438–450.
[CrossRef]

McLeod, D.

C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner, and D. McLeod, “Objective morphological assessment of macular hole surgery by scanning laser tomography,” British KJ. Ophthalmol. 81, 107–116 (1997).
[CrossRef]

Mikelberg, F. S.

F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance, and R. Gosine, “Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss,” J. Glaucoma,  4, 242–247 (1995).
[CrossRef] [PubMed]

Miura, M.

Moraes, L

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine,  7, 502–507, (2001).
[CrossRef] [PubMed]

Morsman, D.

R. N. Weinreb, Lusky, D-U Bartsch, and D. Morsman, “Effect of repetitive imaging on topographic measurements of the optic nerve head,”, Arch Ophthalmol.,  111, 636–638 (1993).
[CrossRef] [PubMed]

Owen, G. M.

Parfitt, C. M.

F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance, and R. Gosine, “Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss,” J. Glaucoma,  4, 242–247 (1995).
[CrossRef] [PubMed]

Pedut-Kloizman, T.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, and M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence tomography,” Ophthalmology, 103, 1889–1898 (1996).

Pflibsen, K. P.

Podoleanu, A. Gh.

A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express,  7, 292–298, (2000), http://www.opticsexpress.org/framestocv7n9.htm
[CrossRef] [PubMed]

A. Gh. Podoleanu and D. A. Jackson, “Noise Analysis of a combined optical coherence tomography and confocal scanning ophthalmoscope,” Appl. Opt.,  38, 2116–2127 (1999).
[CrossRef]

A. Gh. Podoleanu, J. A. Rogers, and D. A. Jackson, “OCT En-face Images from the retina with adjustable depth resolution in real time,” IEEE Journal of Selected Topics in Quantum Electron.,  5, 1176–1184 (1999).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Optics,  3, 12–20 (1998).
[CrossRef]

Puliafito, C.

C. Puliafito, Optical coherence tomography of ocular diseases, (Thorofare, NJ, SLACK Inc., 1996).

Puliafito, C. A.

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Raskauskas, P.A.

Rogers, J. A.

A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express,  7, 292–298, (2000), http://www.opticsexpress.org/framestocv7n9.htm
[CrossRef] [PubMed]

A. Gh. Podoleanu, J. A. Rogers, and D. A. Jackson, “OCT En-face Images from the retina with adjustable depth resolution in real time,” IEEE Journal of Selected Topics in Quantum Electron.,  5, 1176–1184 (1999).
[CrossRef]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine,  7, 502–507, (2001).
[CrossRef] [PubMed]

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, and M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence tomography,” Ophthalmology, 103, 1889–1898 (1996).

Seeger, M.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Optics,  3, 12–20 (1998).
[CrossRef]

Sengersdorf, A.

K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers, and G. K. Kriegsltein, “The cumulative normalised rim/disc area ratio curve,” Graefe’s Arch Clin Exp. Ophthalmol. 234227–231 (1996).
[CrossRef]

Stinson, W. G.

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

Swanson, E.A.

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swindale, N. V.

F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance, and R. Gosine, “Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss,” J. Glaucoma,  4, 242–247 (1995).
[CrossRef] [PubMed]

Trempe, C. L.

E. Beausencourt, A. E. Elsner, M. E. Hartnett, and C. L. Trempe, “Quantitative analysis of macular holes with scanning laser tomography,” Ophthalmology,  104, 2018–2029 (1997).
[PubMed]

Tso, P. C.

A. W. Dreher, P. C. Tso, and R. N. Weinreb, “Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner,” American J. Ophthalmology,  111, 221–229 (1994).

Turner, G. S.

C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner, and D. McLeod, “Objective morphological assessment of macular hole surgery by scanning laser tomography,” British KJ. Ophthalmol. 81, 107–116 (1997).
[CrossRef]

van de Kraats, J.

J. van de Kraats, T.T.J.M. Berendschot, D. van Norren, and D, “The pathways of light measured in fundus reflectometry,” Vision Res,  35, 2229–2247 (1996).
[CrossRef]

van Norren, D.

J. van de Kraats, T.T.J.M. Berendschot, D. van Norren, and D, “The pathways of light measured in fundus reflectometry,” Vision Res,  35, 2229–2247 (1996).
[CrossRef]

Walker, J.P.

Walter, P.

K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers, and G. K. Kriegsltein, “The cumulative normalised rim/disc area ratio curve,” Graefe’s Arch Clin Exp. Ophthalmol. 234227–231 (1996).
[CrossRef]

Webb, D. J.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Optics,  3, 12–20 (1998).
[CrossRef]

Webb, R. H.

R. H. Webb, G. W. Hughes, and F. C. Delori,, “Confocal scanning laser ophthalmoscope,” Applied Optics,  26, 1492–1499 (1987).
[CrossRef] [PubMed]

R. H. Webb, “Scanning laser ophthalmoscope”, in Noninvasive diagnostic techniques in ophthalmology,B. R. Masters ed, (Springer-Verlag, New York, 1990), pp. 438–450.
[CrossRef]

Weinreb, R. N.

A. W. Dreher, P. C. Tso, and R. N. Weinreb, “Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner,” American J. Ophthalmology,  111, 221–229 (1994).

R. N. Weinreb, Lusky, D-U Bartsch, and D. Morsman, “Effect of repetitive imaging on topographic measurements of the optic nerve head,”, Arch Ophthalmol.,  111, 636–638 (1993).
[CrossRef] [PubMed]

Weiter, J. J.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Research,  36, 191–205 (1996).
[CrossRef] [PubMed]

Wing, G.L.

Woon, W. H.

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” British J. Ophthalmology,  76, 470–474, (1992).
[CrossRef]

Zhou, Q.

American J. Ophthalmology (1)

A. W. Dreher, P. C. Tso, and R. N. Weinreb, “Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner,” American J. Ophthalmology,  111, 221–229 (1994).

Appl. Opt. (2)

Applied Optics (1)

R. H. Webb, G. W. Hughes, and F. C. Delori,, “Confocal scanning laser ophthalmoscope,” Applied Optics,  26, 1492–1499 (1987).
[CrossRef] [PubMed]

Arch Ophthalmol. (1)

R. N. Weinreb, Lusky, D-U Bartsch, and D. Morsman, “Effect of repetitive imaging on topographic measurements of the optic nerve head,”, Arch Ophthalmol.,  111, 636–638 (1993).
[CrossRef] [PubMed]

British J. Ophthalmology (1)

W. H. Woon, F. W. Fitzke, A. C. Bird, and J. Marshall, “Confocal imaging of the fundus using a scanning laser ophthalmoscope,” British J. Ophthalmology,  76, 470–474, (1992).
[CrossRef]

British KJ. Ophthalmol. (1)

C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner, and D. McLeod, “Objective morphological assessment of macular hole surgery by scanning laser tomography,” British KJ. Ophthalmol. 81, 107–116 (1997).
[CrossRef]

Exp. Eye Res. (1)

D. U. Bartsch and W.R. Freeman, “Axial intensity distribution analysis of the human retina with a confocal scanning laser tomograph,” Exp. Eye Res.,  58, 161–173 (1994).
[CrossRef] [PubMed]

Graefe’s Arch Clin Exp. Ophthalmol. (1)

K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers, and G. K. Kriegsltein, “The cumulative normalised rim/disc area ratio curve,” Graefe’s Arch Clin Exp. Ophthalmol. 234227–231 (1996).
[CrossRef]

IEEE Journal of Selected Topics in Quantum Electron. (1)

A. Gh. Podoleanu, J. A. Rogers, and D. A. Jackson, “OCT En-face Images from the retina with adjustable depth resolution in real time,” IEEE Journal of Selected Topics in Quantum Electron.,  5, 1176–1184 (1999).
[CrossRef]

Investigative Ophthalmology (1)

D.S. Chauhan and J. Marshall, “The Interpretation of Optical Coherence Tomography Images of the Retina,” Investigative Ophthalmology,  40, 2332–2342 (1999).

J. Biomed Optics (1)

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. Fitzke “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed Optics,  3, 12–20 (1998).
[CrossRef]

J. Glaucoma (1)

F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance, and R. Gosine, “Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss,” J. Glaucoma,  4, 242–247 (1995).
[CrossRef] [PubMed]

Nature Medicine (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine,  7, 502–507, (2001).
[CrossRef] [PubMed]

Ophthalmology (1)

E. Beausencourt, A. E. Elsner, M. E. Hartnett, and C. L. Trempe, “Quantitative analysis of macular holes with scanning laser tomography,” Ophthalmology,  104, 2018–2029 (1997).
[PubMed]

Opt. Commun. (1)

C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun.,  154, 179–185, 1998.
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Science (1)

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res (1)

J. van de Kraats, T.T.J.M. Berendschot, D. van Norren, and D, “The pathways of light measured in fundus reflectometry,” Vision Res,  35, 2229–2247 (1996).
[CrossRef]

Vision Research (1)

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Research,  36, 191–205 (1996).
[CrossRef] [PubMed]

Other (6)

Heidelberg Retina Tomograph, Operation Manual, (Heidelberg Engineering GmbH, Heidelberg, 1997).

C. Puliafito, Optical coherence tomography of ocular diseases, (Thorofare, NJ, SLACK Inc., 1996).

Data sheets of Humphrey Instruments, Optical Coherence Tomography, Humphrey Instruments, (2992 Alvarado St., San Leandro CA 94577, 1996).

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, and M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence tomography,” Ophthalmology, 103, 1889–1898 (1996).

R. H. Webb, “Scanning laser ophthalmoscope”, in Noninvasive diagnostic techniques in ophthalmology,B. R. Masters ed, (Springer-Verlag, New York, 1990), pp. 438–450.
[CrossRef]

American National Standard for the Safe Use of Lasers: ANSI Z 136.1, (Laser Institute of America, New York, NY, 1993).

Supplementary Material (1)

» Media 1: MOV (999 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Relative orientation of the axial scan (A-scan), longitudinal slice (B-scan) and en-face or transversal slice (C-scan).

Figure 2.
Figure 2.

General set-up of the combined OCT/Confocal system. MX, MY: galvanometer mirrors of the XY scanning head. The detailed configuration is presented in references15,16.

Fig. 3.
Fig. 3.

Pair of images from the optic nerve acquired with the standalone OCT/confocal system in longitudinal regime at y=0. Top image: OCT; Bottom: confocal; Each image has 300×300 pixels. Horizontal: Δx~3 mm in both images; Δz (only the OCT image) ~2 mm depth (vertical axis, measured in air). RNFL (bright): retinal nerve fiber layer; PL (dark): photoreceptor layer; RPE (bright): retinal pigment epithelium; CC (bright): choriocapillaris.

Fig. 4.
Fig. 4.

(1 MB) Movie showing the pair of images from the optic nerve acquired with the standalone OCT/confocal system in transversal regime. Top image: OCT; Bottom: confocal. Each image has 300×300 pixels. Horizontal: Δx~3 mm, Vertical: Δy~3 mm in both images. The volume is explored from the retinal nerve fiber layer to the retinal pigment epithelium, along the optic axis. The OCT image displayed is at the depth shown by the double arrow in Figure 3 top.

Fig. 5.
Fig. 5.

Example of a software inferred A’-scan from the set in Figure 4, pixel 180×180, in a grid of pixels counted from the corner top left, up to 210×210 along X and Y axes. The continuous profile represents an interpolation over 60 points, one point for each OCT frame in the set, collected at a certain depth. Horizontal scale: Image number. Vertical scale: arbitrary units for the magnitude of the OCT signal. Interpolation was used to cover for the 4 frames removed from the collection.

Fig. 6.
Fig. 6.

Topography of the first surface, 186×186 pixels (1.9 mm×1.9 mm). Depth map (values in color bar, the frame number, depth could be inferred by multiplying the frame number by 20 µm). (a):View from the top, along the z direction; (b): 3D view; (c): as seen from direction A in b; (d) as seen from direction B in b. The vertical arrow in (c) denotes the transversal position of the A’-scan in Fig. 5.

Fig. 7.
Fig. 7.

Topography of the deepest surface, 186×186 pixels transversal (1.9 mm×1.9 mm). Depth map (values in color bar, the frame number, depth could be inferred by multiplying the frame number by 20 µm; the color map is different than that in Fig. 6.); (a): as seen from the top; (b): 3D view; (c): first and the deepest surfaces seen from the direction A in (d); (d): 3D views of the first and the deepest surfaces (Fig. 6(b) and 7(b) superposed).

Fig. 8.
Fig. 8.

The first image in the confocal set showing the contour line in red where A’ scans are calculated (300×3000 pixels).

Fig. 9.
Fig. 9.

Depth of the first surface, calculated from the depth position of the first peak in each A’-scan (such as that in Figure 5) originating on points situated on the contour drawn on the confocal image from the first frame in Fig. 8.

Fig. 10.
Fig. 10.

Colored map topography of the first surface. The colored areas correspond to: green, the area above the surface, blue, the area between the surface and the reference plane and red the area below the reference plane. Values for areas are given in the Table 1. Left: data were processed using the OCT depth resolution; Right: data from the fabricated set of 300 µm depth resolution.

Tables (1)

Tables Icon

Table 1. Comparative results for the areas and volumes in the optic nerve measured with en-face OCT and with HRT.

Metrics