Abstract

A special imaging instrument was developed which can acquire optical coherence tomography (OCT) en-face images from the eye fundus, and simultaneously a confocal image. Using this instrument we illustrate for the first time the application of en-face OCT imaging to produce topography and perform area and volume measurements of the optic nerve. The procedure is compared with the topography, area and volume measurements using a confocal scanning laser ophthalmoscope.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. H. Webb, G. W. Hughes and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987).
    [CrossRef] [PubMed]
  2. W. H. Woon, F. W. Fitzke, A. C. Bird and J. Marshall, "Confocal imaging of the fundus using a scanning laser ophthalmoscope," British J. Ophthalmology, 76, 470-474, (1992).
    [CrossRef]
  3. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, "Infrared imaging of sub- retinal structures in the human ocular fundus," Vision Research 36, 191-205 (1996).
    [CrossRef] [PubMed]
  4. B. R. Masters, "Three-dimensional confocal microscopy of the human optic nerve in vivo," Opt. Express, 3, 356-359 (1998), http://www.opticsexpress.org/oearchive/source/6295.htm
    [CrossRef] [PubMed]
  5. Heidelberg Retina Tomograph, Operation Manual, (Heidelberg Engineering GmbH, Heidelberg, 1997).
  6. A. W. Dreher, P. C. Tso and R. N. Weinreb, "Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner," American J. Ophthalmology, 111, 221-229 (1994).
  7. F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance and R. Gosine, "Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss," J. Glaucoma, 4, 242-247 (1995).
    [CrossRef] [PubMed]
  8. D. U. Bartsch, W.R. Freeman, "Axial intensity distribution analysis of the human retina with a confocal scanning laser tomograph," Exp. Eye Res. 58, 161-173 (1994).
    [CrossRef] [PubMed]
  9. K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers and G. K. Kriegsltein, "The cumulative normalised rim/disc area ratio curve," Graefe's Arch Clin Exp. Ophthalmol. 234 227-231 (1996).
    [CrossRef]
  10. D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical Coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  11. J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett., 19, 590-592 (1994).
    [CrossRef]
  12. C. Puliafito, Optical coherence tomography of ocular diseases, (Thorofare, NJ, SLACK Inc., 1996).
  13. Data sheets of Humphrey Instruments, Optical Coherence Tomography, Humphrey Instruments, (2992 Alvarado St., San Leandro CA 94577, 1996).
  14. J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, E. A. Swanson, "Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence tomography," Ophthalmology, 103, 1889-1898 (1996).
  15. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson and F. Fitzke "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed Opt. 3, 12-20 (1998).
    [CrossRef]
  16. A. Gh. Podoleanu and D. A. Jackson, "Noise Analysis of a combined optical coherence tomography and confocal scanning ophthalmoscope," Appl. Opt. 38, 2116-2127 (1999).
    [CrossRef]
  17. A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, S. Dunne, "Three dimensional OCT images from retina and skin," Opt. Express, 7, 292-298, (2000), http://www.opticsexpress.org/framestocv7n9.htm
    [CrossRef] [PubMed]
  18. R. N. Weinreb, Lusky, D-U Bartsch and D. Morsman, "Effect of repetitive imaging on topographic measurements of the optic nerve head," Arch Ophthalmol. 111, 636-638 (1993).
    [CrossRef] [PubMed]
  19. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, .S. Schuman, J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507, (2001).
    [CrossRef] [PubMed]
  20. D. S. Chauhan and J. Marshall, "The Interpretation of Optical Coherence Tomography Images of the Retina," Investigative Ophthalmology 40, 2332-2342 (1999).
  21. C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, "Dispersion induced multiple signal peak splitting in partial coherence interferometry," Opt. Commun. 154, 179-185 (1998).
    [CrossRef]
  22. R. H. Webb, "Scanning laser ophthalmoscope", in Noninvasive diagnostic techniques in ophthalmology, B. R. Masters ed, (Springer-Verlag, New York, 1990), pp. 438-450.
    [CrossRef]
  23. American National Standard for the Safe Use of Lasers: ANSI Z 136.1, (Laser Institute of America, New York, NY, 1993).
  24. A. Gh.Podoleanu, J. A. Rogers, D. A. Jackson, "OCT En-face Images from the retina with adjustable depth resolution in real time," IEEE Journal of Selected Topics in Quantum Electron. 5, 1176-1184 (1999).
    [CrossRef]
  25. F. C. Delori and K. P. Pflibsen, 'Spectral reflectance of the human ocular fundus," Appl. Opt. 28, 1061-1077 (1989).
    [CrossRef] [PubMed]
  26. J. van de Kraats,. T.T.J.M.Berendschot, D. van Norren, D, "The pathways of light measured in fundus reflectometry," Vision Res. 35, 2229-2247 (1996).
    [CrossRef]
  27. Elsner AE, Moraes L, Beausencourt E, et al., "Scanning laser reflectometry of retinal and subretinal tissues," Opt. Express 6, 243-250 (2000) http://www.opticsexpress.org/oearchive/source/21766.htm
    [CrossRef] [PubMed]
  28. A.E. Elsner, M. Miura, S.A. Burns, E. Beausencourt, C. Kunze, L.M. Kelley, , J.P. Walker, G.L. Wing, P.A. Raskauskas, , D.C. Fletcher, Q. Zhou and A.W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2001), http://www.opticsexpress.org/oearchive/source/22805.htm
    [CrossRef]
  29. E. Beausencourt, A. E. Elsner, M. E. Hartnett, C. L. Trempe, "Quantitative analysis of macular holes with scanning laser tomography," Ophthalmology 104, 2018-2029 (1997).
    [PubMed]
  30. C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner and D. McLeod, "Objective morphological assessment of macular hole surgery by scanning laser tomography," British KJ. Ophthalmol. 81, 107-116 (1997).
    [CrossRef]

Other (30)

R. H. Webb, G. W. Hughes and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987).
[CrossRef] [PubMed]

W. H. Woon, F. W. Fitzke, A. C. Bird and J. Marshall, "Confocal imaging of the fundus using a scanning laser ophthalmoscope," British J. Ophthalmology, 76, 470-474, (1992).
[CrossRef]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, "Infrared imaging of sub- retinal structures in the human ocular fundus," Vision Research 36, 191-205 (1996).
[CrossRef] [PubMed]

B. R. Masters, "Three-dimensional confocal microscopy of the human optic nerve in vivo," Opt. Express, 3, 356-359 (1998), http://www.opticsexpress.org/oearchive/source/6295.htm
[CrossRef] [PubMed]

Heidelberg Retina Tomograph, Operation Manual, (Heidelberg Engineering GmbH, Heidelberg, 1997).

A. W. Dreher, P. C. Tso and R. N. Weinreb, "Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner," American J. Ophthalmology, 111, 221-229 (1994).

F. S. Mikelberg, C. M. Parfitt, N. V. Swindale, S. L. Graham, S. M. Drance and R. Gosine, "Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss," J. Glaucoma, 4, 242-247 (1995).
[CrossRef] [PubMed]

D. U. Bartsch, W.R. Freeman, "Axial intensity distribution analysis of the human retina with a confocal scanning laser tomograph," Exp. Eye Res. 58, 161-173 (1994).
[CrossRef] [PubMed]

K. U. Bartz-Schmidt, A. Sengersdorf, P. Esser, P. Walter, R-D. Hilgers and G. K. Kriegsltein, "The cumulative normalised rim/disc area ratio curve," Graefe's Arch Clin Exp. Ophthalmol. 234 227-231 (1996).
[CrossRef]

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical Coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

J. A. Izaat, M. R. Hee, G. M. Owen, E. A. Swanson and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett., 19, 590-592 (1994).
[CrossRef]

C. Puliafito, Optical coherence tomography of ocular diseases, (Thorofare, NJ, SLACK Inc., 1996).

Data sheets of Humphrey Instruments, Optical Coherence Tomography, Humphrey Instruments, (2992 Alvarado St., San Leandro CA 94577, 1996).

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Walkins, J. G. Cooker, C. A. Puliafito, J. G. Fujimoto, E. A. Swanson, "Reproducibility of Nerve Fiber Layer Thickness Measurements Using Optical Coherence tomography," Ophthalmology, 103, 1889-1898 (1996).

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson and F. Fitzke "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed Opt. 3, 12-20 (1998).
[CrossRef]

A. Gh. Podoleanu and D. A. Jackson, "Noise Analysis of a combined optical coherence tomography and confocal scanning ophthalmoscope," Appl. Opt. 38, 2116-2127 (1999).
[CrossRef]

A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, S. Dunne, "Three dimensional OCT images from retina and skin," Opt. Express, 7, 292-298, (2000), http://www.opticsexpress.org/framestocv7n9.htm
[CrossRef] [PubMed]

R. N. Weinreb, Lusky, D-U Bartsch and D. Morsman, "Effect of repetitive imaging on topographic measurements of the optic nerve head," Arch Ophthalmol. 111, 636-638 (1993).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, .S. Schuman, J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507, (2001).
[CrossRef] [PubMed]

D. S. Chauhan and J. Marshall, "The Interpretation of Optical Coherence Tomography Images of the Retina," Investigative Ophthalmology 40, 2332-2342 (1999).

C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, "Dispersion induced multiple signal peak splitting in partial coherence interferometry," Opt. Commun. 154, 179-185 (1998).
[CrossRef]

R. H. Webb, "Scanning laser ophthalmoscope", in Noninvasive diagnostic techniques in ophthalmology, B. R. Masters ed, (Springer-Verlag, New York, 1990), pp. 438-450.
[CrossRef]

American National Standard for the Safe Use of Lasers: ANSI Z 136.1, (Laser Institute of America, New York, NY, 1993).

A. Gh.Podoleanu, J. A. Rogers, D. A. Jackson, "OCT En-face Images from the retina with adjustable depth resolution in real time," IEEE Journal of Selected Topics in Quantum Electron. 5, 1176-1184 (1999).
[CrossRef]

F. C. Delori and K. P. Pflibsen, 'Spectral reflectance of the human ocular fundus," Appl. Opt. 28, 1061-1077 (1989).
[CrossRef] [PubMed]

J. van de Kraats,. T.T.J.M.Berendschot, D. van Norren, D, "The pathways of light measured in fundus reflectometry," Vision Res. 35, 2229-2247 (1996).
[CrossRef]

Elsner AE, Moraes L, Beausencourt E, et al., "Scanning laser reflectometry of retinal and subretinal tissues," Opt. Express 6, 243-250 (2000) http://www.opticsexpress.org/oearchive/source/21766.htm
[CrossRef] [PubMed]

A.E. Elsner, M. Miura, S.A. Burns, E. Beausencourt, C. Kunze, L.M. Kelley, , J.P. Walker, G.L. Wing, P.A. Raskauskas, , D.C. Fletcher, Q. Zhou and A.W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2001), http://www.opticsexpress.org/oearchive/source/22805.htm
[CrossRef]

E. Beausencourt, A. E. Elsner, M. E. Hartnett, C. L. Trempe, "Quantitative analysis of macular holes with scanning laser tomography," Ophthalmology 104, 2018-2029 (1997).
[PubMed]

C. Hudson, S. J. Charles, J. G. Flanagan, A. K. Brahma, G. S. Turner and D. McLeod, "Objective morphological assessment of macular hole surgery by scanning laser tomography," British KJ. Ophthalmol. 81, 107-116 (1997).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (999 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Relative orientation of the axial scan (A-scan), longitudinal slice (B-scan) and en-face or transversal slice (C-scan).

Figure 2.
Figure 2.

General set-up of the combined OCT/Confocal system. MX, MY: galvanometer mirrors of the XY scanning head. The detailed configuration is presented in references15,16.

Fig. 3.
Fig. 3.

Pair of images from the optic nerve acquired with the standalone OCT/confocal system in longitudinal regime at y=0. Top image: OCT; Bottom: confocal; Each image has 300×300 pixels. Horizontal: Δx~3 mm in both images; Δz (only the OCT image) ~2 mm depth (vertical axis, measured in air). RNFL (bright): retinal nerve fiber layer; PL (dark): photoreceptor layer; RPE (bright): retinal pigment epithelium; CC (bright): choriocapillaris.

Fig. 4.
Fig. 4.

(1 MB) Movie showing the pair of images from the optic nerve acquired with the standalone OCT/confocal system in transversal regime. Top image: OCT; Bottom: confocal. Each image has 300×300 pixels. Horizontal: Δx~3 mm, Vertical: Δy~3 mm in both images. The volume is explored from the retinal nerve fiber layer to the retinal pigment epithelium, along the optic axis. The OCT image displayed is at the depth shown by the double arrow in Figure 3 top.

Fig. 5.
Fig. 5.

Example of a software inferred A’-scan from the set in Figure 4, pixel 180×180, in a grid of pixels counted from the corner top left, up to 210×210 along X and Y axes. The continuous profile represents an interpolation over 60 points, one point for each OCT frame in the set, collected at a certain depth. Horizontal scale: Image number. Vertical scale: arbitrary units for the magnitude of the OCT signal. Interpolation was used to cover for the 4 frames removed from the collection.

Fig. 6.
Fig. 6.

Topography of the first surface, 186×186 pixels (1.9 mm×1.9 mm). Depth map (values in color bar, the frame number, depth could be inferred by multiplying the frame number by 20 µm). (a):View from the top, along the z direction; (b): 3D view; (c): as seen from direction A in b; (d) as seen from direction B in b. The vertical arrow in (c) denotes the transversal position of the A’-scan in Fig. 5.

Fig. 7.
Fig. 7.

Topography of the deepest surface, 186×186 pixels transversal (1.9 mm×1.9 mm). Depth map (values in color bar, the frame number, depth could be inferred by multiplying the frame number by 20 µm; the color map is different than that in Fig. 6.); (a): as seen from the top; (b): 3D view; (c): first and the deepest surfaces seen from the direction A in (d); (d): 3D views of the first and the deepest surfaces (Fig. 6(b) and 7(b) superposed).

Fig. 8.
Fig. 8.

The first image in the confocal set showing the contour line in red where A’ scans are calculated (300×3000 pixels).

Fig. 9.
Fig. 9.

Depth of the first surface, calculated from the depth position of the first peak in each A’-scan (such as that in Figure 5) originating on points situated on the contour drawn on the confocal image from the first frame in Fig. 8.

Fig. 10.
Fig. 10.

Colored map topography of the first surface. The colored areas correspond to: green, the area above the surface, blue, the area between the surface and the reference plane and red the area below the reference plane. Values for areas are given in the Table 1. Left: data were processed using the OCT depth resolution; Right: data from the fabricated set of 300 µm depth resolution.

Tables (1)

Tables Icon

Table 1. Comparative results for the areas and volumes in the optic nerve measured with en-face OCT and with HRT.

Metrics