Abstract

A novel graphical approach for probing multicomponent collective ejection processes is described. Image labeling provides a visual means for identifying ejection partners and their relative momenta, isolating specific decay channels for detailed study and determining initial electronic and/or molecular geometries prior to ejection. The power of the technique is demonstrated by looking at strong-fieldmultiphoton-induce 3-atom Coulomb explosion spectra.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhu, W. T. Hill, III, “4π Electron Ion Image Spectrometer,” J. Opt. Soc. Am. B 14, 2212 (1997).
    [CrossRef]
  2. T. Weberet al., “Recoil-Ion Momentum Distributions for Single and Double Ionization of Helium in Strong Laser Fields,” Phys. Rev. Lett. 84, 443 (2000).
    [CrossRef] [PubMed]
  3. By Coulomb explosion, we mean the energetic dissociation of a multiply ionized molecule into atomic ions. The final kinetic energies of the atomic ions are determined mostly by the classical electric potential associated with the internuclear separation of the ionized nuclei just prior to the explosion.
  4. K. Zhao, T. Colvin, G. Zhang, W. T. Hill, III, “Deconvolving 2-D Images of 3-D Momentum Distributions,” J. Opt. Soc. Am. B (2001).
  5. L. J. Frasinski, K. Codling, P. A. Hatherly, “Covariance mapping: a correlation method applied to multiphoton multiple ionization,” Science 246, 1029 (1989).
    [CrossRef] [PubMed]
  6. Most of the correlation events in Fig. 2, about 75%, involve doubly-charged ions only. The rest of the events involve at most one triply-charged ion. This was determined by comparing correlation values from three different correlation images containing only doubly charged ions, only triply charged ions and a composite with both doubly and triply charged ions. Detail of this analysis will be presented in a future paper.
  7. L. J. Frasinski, P. A. Hatherly, K. Codling, “Multiphoton multiple ionization of N2O probed by three-dimensional covariance mapping,” Phys. Lett. A 156, 227 (1991).
    [CrossRef]
  8. T. Seideman, M. Y. Ivanov, P. B. Corkum, “The Role of Electron Localization in Intense-Field Molecular Ionization,” Phys. Rev. Lett. 75, 2819 (1995).
    [CrossRef] [PubMed]
  9. T. Zuo, A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52, R2511 (1995).
    [CrossRef] [PubMed]
  10. S. Chelkowski, A. D. Bandrauk, “Two Step Coulomb Explosions of Diatoms in Intense Laser Fields,” J. Phys. B 28, L723 (1995).
    [CrossRef]
  11. C. Cornaggia, M. Schmidt, D. Normand, “Coulomb Explosion of CO2 in an Intense Femtosecond Laser Field,” J. Phys. B 27, L123 (1994).
    [CrossRef]
  12. W. A. Bryan, J. H. Sanderson, A. El-Zein, W. R. Newell, P. F. Taday, A. J. Langley, “Laser-induced Coulomb explosion, geometry modification and reorientation of carbon dioxide,” J. Phys. B 33, 745 (2000).
    [CrossRef]

2000

T. Weberet al., “Recoil-Ion Momentum Distributions for Single and Double Ionization of Helium in Strong Laser Fields,” Phys. Rev. Lett. 84, 443 (2000).
[CrossRef] [PubMed]

W. A. Bryan, J. H. Sanderson, A. El-Zein, W. R. Newell, P. F. Taday, A. J. Langley, “Laser-induced Coulomb explosion, geometry modification and reorientation of carbon dioxide,” J. Phys. B 33, 745 (2000).
[CrossRef]

1997

1995

T. Seideman, M. Y. Ivanov, P. B. Corkum, “The Role of Electron Localization in Intense-Field Molecular Ionization,” Phys. Rev. Lett. 75, 2819 (1995).
[CrossRef] [PubMed]

T. Zuo, A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52, R2511 (1995).
[CrossRef] [PubMed]

S. Chelkowski, A. D. Bandrauk, “Two Step Coulomb Explosions of Diatoms in Intense Laser Fields,” J. Phys. B 28, L723 (1995).
[CrossRef]

1994

C. Cornaggia, M. Schmidt, D. Normand, “Coulomb Explosion of CO2 in an Intense Femtosecond Laser Field,” J. Phys. B 27, L123 (1994).
[CrossRef]

1991

L. J. Frasinski, P. A. Hatherly, K. Codling, “Multiphoton multiple ionization of N2O probed by three-dimensional covariance mapping,” Phys. Lett. A 156, 227 (1991).
[CrossRef]

1989

L. J. Frasinski, K. Codling, P. A. Hatherly, “Covariance mapping: a correlation method applied to multiphoton multiple ionization,” Science 246, 1029 (1989).
[CrossRef] [PubMed]

Bandrauk, A. D.

S. Chelkowski, A. D. Bandrauk, “Two Step Coulomb Explosions of Diatoms in Intense Laser Fields,” J. Phys. B 28, L723 (1995).
[CrossRef]

T. Zuo, A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52, R2511 (1995).
[CrossRef] [PubMed]

Bryan, W. A.

W. A. Bryan, J. H. Sanderson, A. El-Zein, W. R. Newell, P. F. Taday, A. J. Langley, “Laser-induced Coulomb explosion, geometry modification and reorientation of carbon dioxide,” J. Phys. B 33, 745 (2000).
[CrossRef]

Chelkowski, S.

S. Chelkowski, A. D. Bandrauk, “Two Step Coulomb Explosions of Diatoms in Intense Laser Fields,” J. Phys. B 28, L723 (1995).
[CrossRef]

Codling, K.

L. J. Frasinski, P. A. Hatherly, K. Codling, “Multiphoton multiple ionization of N2O probed by three-dimensional covariance mapping,” Phys. Lett. A 156, 227 (1991).
[CrossRef]

L. J. Frasinski, K. Codling, P. A. Hatherly, “Covariance mapping: a correlation method applied to multiphoton multiple ionization,” Science 246, 1029 (1989).
[CrossRef] [PubMed]

Colvin, T.

K. Zhao, T. Colvin, G. Zhang, W. T. Hill, III, “Deconvolving 2-D Images of 3-D Momentum Distributions,” J. Opt. Soc. Am. B (2001).

Corkum, P. B.

T. Seideman, M. Y. Ivanov, P. B. Corkum, “The Role of Electron Localization in Intense-Field Molecular Ionization,” Phys. Rev. Lett. 75, 2819 (1995).
[CrossRef] [PubMed]

Cornaggia, C.

C. Cornaggia, M. Schmidt, D. Normand, “Coulomb Explosion of CO2 in an Intense Femtosecond Laser Field,” J. Phys. B 27, L123 (1994).
[CrossRef]

El-Zein, A.

W. A. Bryan, J. H. Sanderson, A. El-Zein, W. R. Newell, P. F. Taday, A. J. Langley, “Laser-induced Coulomb explosion, geometry modification and reorientation of carbon dioxide,” J. Phys. B 33, 745 (2000).
[CrossRef]

Frasinski, L. J.

L. J. Frasinski, P. A. Hatherly, K. Codling, “Multiphoton multiple ionization of N2O probed by three-dimensional covariance mapping,” Phys. Lett. A 156, 227 (1991).
[CrossRef]

L. J. Frasinski, K. Codling, P. A. Hatherly, “Covariance mapping: a correlation method applied to multiphoton multiple ionization,” Science 246, 1029 (1989).
[CrossRef] [PubMed]

Hatherly, P. A.

L. J. Frasinski, P. A. Hatherly, K. Codling, “Multiphoton multiple ionization of N2O probed by three-dimensional covariance mapping,” Phys. Lett. A 156, 227 (1991).
[CrossRef]

L. J. Frasinski, K. Codling, P. A. Hatherly, “Covariance mapping: a correlation method applied to multiphoton multiple ionization,” Science 246, 1029 (1989).
[CrossRef] [PubMed]

Hill, III, W. T.

J. Zhu, W. T. Hill, III, “4π Electron Ion Image Spectrometer,” J. Opt. Soc. Am. B 14, 2212 (1997).
[CrossRef]

K. Zhao, T. Colvin, G. Zhang, W. T. Hill, III, “Deconvolving 2-D Images of 3-D Momentum Distributions,” J. Opt. Soc. Am. B (2001).

Ivanov, M. Y.

T. Seideman, M. Y. Ivanov, P. B. Corkum, “The Role of Electron Localization in Intense-Field Molecular Ionization,” Phys. Rev. Lett. 75, 2819 (1995).
[CrossRef] [PubMed]

Langley, A. J.

W. A. Bryan, J. H. Sanderson, A. El-Zein, W. R. Newell, P. F. Taday, A. J. Langley, “Laser-induced Coulomb explosion, geometry modification and reorientation of carbon dioxide,” J. Phys. B 33, 745 (2000).
[CrossRef]

Newell, W. R.

W. A. Bryan, J. H. Sanderson, A. El-Zein, W. R. Newell, P. F. Taday, A. J. Langley, “Laser-induced Coulomb explosion, geometry modification and reorientation of carbon dioxide,” J. Phys. B 33, 745 (2000).
[CrossRef]

Normand, D.

C. Cornaggia, M. Schmidt, D. Normand, “Coulomb Explosion of CO2 in an Intense Femtosecond Laser Field,” J. Phys. B 27, L123 (1994).
[CrossRef]

Sanderson, J. H.

W. A. Bryan, J. H. Sanderson, A. El-Zein, W. R. Newell, P. F. Taday, A. J. Langley, “Laser-induced Coulomb explosion, geometry modification and reorientation of carbon dioxide,” J. Phys. B 33, 745 (2000).
[CrossRef]

Schmidt, M.

C. Cornaggia, M. Schmidt, D. Normand, “Coulomb Explosion of CO2 in an Intense Femtosecond Laser Field,” J. Phys. B 27, L123 (1994).
[CrossRef]

Seideman, T.

T. Seideman, M. Y. Ivanov, P. B. Corkum, “The Role of Electron Localization in Intense-Field Molecular Ionization,” Phys. Rev. Lett. 75, 2819 (1995).
[CrossRef] [PubMed]

Taday, P. F.

W. A. Bryan, J. H. Sanderson, A. El-Zein, W. R. Newell, P. F. Taday, A. J. Langley, “Laser-induced Coulomb explosion, geometry modification and reorientation of carbon dioxide,” J. Phys. B 33, 745 (2000).
[CrossRef]

Weber, T.

T. Weberet al., “Recoil-Ion Momentum Distributions for Single and Double Ionization of Helium in Strong Laser Fields,” Phys. Rev. Lett. 84, 443 (2000).
[CrossRef] [PubMed]

Zhang, G.

K. Zhao, T. Colvin, G. Zhang, W. T. Hill, III, “Deconvolving 2-D Images of 3-D Momentum Distributions,” J. Opt. Soc. Am. B (2001).

Zhao, K.

K. Zhao, T. Colvin, G. Zhang, W. T. Hill, III, “Deconvolving 2-D Images of 3-D Momentum Distributions,” J. Opt. Soc. Am. B (2001).

Zhu, J.

Zuo, T.

T. Zuo, A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52, R2511 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. B

S. Chelkowski, A. D. Bandrauk, “Two Step Coulomb Explosions of Diatoms in Intense Laser Fields,” J. Phys. B 28, L723 (1995).
[CrossRef]

C. Cornaggia, M. Schmidt, D. Normand, “Coulomb Explosion of CO2 in an Intense Femtosecond Laser Field,” J. Phys. B 27, L123 (1994).
[CrossRef]

W. A. Bryan, J. H. Sanderson, A. El-Zein, W. R. Newell, P. F. Taday, A. J. Langley, “Laser-induced Coulomb explosion, geometry modification and reorientation of carbon dioxide,” J. Phys. B 33, 745 (2000).
[CrossRef]

Phys. Lett. A

L. J. Frasinski, P. A. Hatherly, K. Codling, “Multiphoton multiple ionization of N2O probed by three-dimensional covariance mapping,” Phys. Lett. A 156, 227 (1991).
[CrossRef]

Phys. Rev. A

T. Zuo, A. D. Bandrauk, “Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers,” Phys. Rev. A 52, R2511 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

T. Seideman, M. Y. Ivanov, P. B. Corkum, “The Role of Electron Localization in Intense-Field Molecular Ionization,” Phys. Rev. Lett. 75, 2819 (1995).
[CrossRef] [PubMed]

T. Weberet al., “Recoil-Ion Momentum Distributions for Single and Double Ionization of Helium in Strong Laser Fields,” Phys. Rev. Lett. 84, 443 (2000).
[CrossRef] [PubMed]

Science

L. J. Frasinski, K. Codling, P. A. Hatherly, “Covariance mapping: a correlation method applied to multiphoton multiple ionization,” Science 246, 1029 (1989).
[CrossRef] [PubMed]

Other

Most of the correlation events in Fig. 2, about 75%, involve doubly-charged ions only. The rest of the events involve at most one triply-charged ion. This was determined by comparing correlation values from three different correlation images containing only doubly charged ions, only triply charged ions and a composite with both doubly and triply charged ions. Detail of this analysis will be presented in a future paper.

By Coulomb explosion, we mean the energetic dissociation of a multiply ionized molecule into atomic ions. The final kinetic energies of the atomic ions are determined mostly by the classical electric potential associated with the internuclear separation of the ionized nuclei just prior to the explosion.

K. Zhao, T. Colvin, G. Zhang, W. T. Hill, III, “Deconvolving 2-D Images of 3-D Momentum Distributions,” J. Opt. Soc. Am. B (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The Coulomb explosion image of NO2 (inset) and surface plot showing the momentum distribution of N q+ and O q+ ions (75% q=2 and 25% q=3). This distribution contains 500,000 laser pulses, each centered at 800 nm, with a pulse width of 100 fs and linearly polarized (horizontal in the inset) with a peak intensity of 1015 W/cm2. The vertical distribution is composed of N q+ ions while the distribution parallel to the polarization axis is a mixture of both N q+ and O q+ ions.

Fig. 2.
Fig. 2.

This figure explains how to read a correlation image. The concentric circles and spokes in the upper left panel divide the momentum distribution image (the same as that displayed in the inset of Fig. 1) into sectors. The grey arrow indicates labeled ions (i.e., a subset of ions with a narrow momentum distribution moving downward, 6 o’clock); the white arrows indicate the correlated sectors (ions moving toward 2 and 10 o’clock). The right panel shows the correlation image for the Coulomb explosion where all three atomic ions are ejected simultaneously. This image shows the momenta of the charges ejected simultaneously. The grey (white) arrows indicate the final momenta of the labeled (correlated) charges. The correlation image in the lower left panel is the difference between averaging only those frames that have a nonzero count in the labeled sector and the average of all 500,000 frames.

Fig. 3.
Fig. 3.

Two correlation images for the Coulomb explosion of CO2 taken under the same conditions as Fig. 1. We label O ion moving toward 3 o’clock in the left image and those moving toward 6 o’clock in the right image. We isolate linear explosion events on the left and bent events on the right.

Fig. 4.
Fig. 4.

Two correlation images for NO2 taken from the same data set as Fig. 1 showing a sequential dissociation-channel (left) and a simultaneous dissociation-channel. The sequential channel involves an explosion of NO2 into NO+O ions followed by the explosion of the NO ion. Pictured on the left is the explosion of NO. The explosion dynamics is asymmetric, the center of mass of the two correlated charges is not the center of the image.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r = 2 / qF
C ij = S i · S j S i · S j σ S i σ S j ,

Metrics