Abstract

A novel spatial light modulator (SLM) made of an array of fused-silica plates was developed for the purpose of feedback control for intense femtosecond laser pulses over a wide spectral range. Dispersion compensation for 20-fs pulses from a Ti:sapphire oscillator was successfully demonstrated using the SLM with an adaptive feedback control system. The SLM was also applied to the output pulses from a Ti:sapphire amplifier for compensation of material.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator," Opt. Lett. 15, 326-328 (1990).
    [CrossRef] [PubMed]
  2. D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
    [CrossRef]
  3. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
    [CrossRef]
  4. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  5. C. Dorrer, F. Salin, F. Verluise, and J. P. Huignard, "Programmable phase control of femtosecond pulses by use of a nonpixelated spatial light modulator," Opt. Lett. 23, 709-711 (1998).
    [CrossRef]
  6. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
    [CrossRef]
  7. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
    [CrossRef]
  8. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000).
    [CrossRef]
  9. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280 151-158 (1997).
    [CrossRef]
  10. T. Feurer, "Feedback-controlled optimization of soft-X-ray radiation from femtosecond laser-produced plasmas," Appl. Phys. B 68, 55-60 (1999).
    [CrossRef]
  11. T. Hornung, R. Meier, D. Zeidler, K. L. Kompa, D. Proch, and M. Motzkus, "Optimal control of one- and two-photon transitions with shaped femtosecond pulses and feedback," Appl. Phys. B 71, 277-284 (2000).
    [CrossRef]
  12. M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
    [CrossRef]
  13. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, "Generation of coherent soft X rays at 2.7 nm using high harmonics," Phys Rev. Lett. 79, 2967-2970 (1997).
    [CrossRef]
  14. M. Schn.rer, Ch. Spielmann, P. Wobrauschek, C. Streli, N. H. Burnett, C. Kan, K. Ferencz, R. Koppitsch, Z. Cheng, T. Brabec, and F. Krausz, "Coherent 0.5keV X-ray emission from helium driven by a sub-10-fs laser," Phys. Rev. Lett. 80, 3236-3239 (1998).
    [CrossRef]
  15. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
    [CrossRef]
  16. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, 2nd Ed. (Cambridge Univ. Press, Cambridge, 1989), Chap. 10.
  17. T. Morita, R. Yoshida, Y. Okamoto, M. K. Kurosawa, and T. Higuchi, "A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator," IEEE Trans. Ultrasonics Ferroelectronics and Frequency Control 46, 1439-1445 (1999).

Other

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator," Opt. Lett. 15, 326-328 (1990).
[CrossRef] [PubMed]

D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

C. Dorrer, F. Salin, F. Verluise, and J. P. Huignard, "Programmable phase control of femtosecond pulses by use of a nonpixelated spatial light modulator," Opt. Lett. 23, 709-711 (1998).
[CrossRef]

A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
[CrossRef]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
[CrossRef]

F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000).
[CrossRef]

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280 151-158 (1997).
[CrossRef]

T. Feurer, "Feedback-controlled optimization of soft-X-ray radiation from femtosecond laser-produced plasmas," Appl. Phys. B 68, 55-60 (1999).
[CrossRef]

T. Hornung, R. Meier, D. Zeidler, K. L. Kompa, D. Proch, and M. Motzkus, "Optimal control of one- and two-photon transitions with shaped femtosecond pulses and feedback," Appl. Phys. B 71, 277-284 (2000).
[CrossRef]

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, "Generation of coherent soft X rays at 2.7 nm using high harmonics," Phys Rev. Lett. 79, 2967-2970 (1997).
[CrossRef]

M. Schn.rer, Ch. Spielmann, P. Wobrauschek, C. Streli, N. H. Burnett, C. Kan, K. Ferencz, R. Koppitsch, Z. Cheng, T. Brabec, and F. Krausz, "Coherent 0.5keV X-ray emission from helium driven by a sub-10-fs laser," Phys. Rev. Lett. 80, 3236-3239 (1998).
[CrossRef]

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, 2nd Ed. (Cambridge Univ. Press, Cambridge, 1989), Chap. 10.

T. Morita, R. Yoshida, Y. Okamoto, M. K. Kurosawa, and T. Higuchi, "A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator," IEEE Trans. Ultrasonics Ferroelectronics and Frequency Control 46, 1439-1445 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic view of the fused-silica spatial light modulator.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Autocorrelation traces (a) before and (b) after the compensation of material dispersion. (c) SHG peak intensity as a function of the number of iterations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( θ ) = 2 πd λ ( n 2 sin 2 θ cos θ )

Metrics