Abstract

An artificial retina camera (ARC) is employed for real-time preprocessing of images. And the algorithm of Hough transform is advanced for detecting the biology-images with approximate circle edge-information in the two-dimension space. This method also works in parallel for processing multiple input and partial input patterns.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. V. C. Hough, �Methods and means for recognition complex pattern,� U. S. Patent 3,069,654 (1962).
  2. D. H. Ballard, �Generalizing the Hough transform to detect arbitrary shapes,� Pattern Recognition, 13(2), 111-122 (1981).
    [CrossRef]
  3. D. Casasent and R. Krishnapuram, �Curved object location by Hough transformations and inversions,� Pattern Recognition, 20(2), 181-188 (1987).
    [CrossRef]
  4. X. Lin and K. Otobe, �Real-time biology-image recognition using an artificial retina LSI,� Proceedings of OSA Annual Meeting and Exhibit 2000, pp. 111 (2000).
  5. K. Kyuma, E. Lange, J. Ohta, A. Hermanns, B. Banish, and M. Oita �Artificial retinas � fast, versatile image processors,� Nature, 372(6502), 197-198 (1994).
    [CrossRef]
  6. H. Kage, W. T. Freeman, Y. Miyake, E. Funatsu, K. Tanaka, and K. Kyuma, �Artificial retina chips as on-chip image processors and gesture-oriented interfaces,� Opt. Eng. 38(12), 1979-1988 (1999).
    [CrossRef]

Other (6)

P. V. C. Hough, �Methods and means for recognition complex pattern,� U. S. Patent 3,069,654 (1962).

D. H. Ballard, �Generalizing the Hough transform to detect arbitrary shapes,� Pattern Recognition, 13(2), 111-122 (1981).
[CrossRef]

D. Casasent and R. Krishnapuram, �Curved object location by Hough transformations and inversions,� Pattern Recognition, 20(2), 181-188 (1987).
[CrossRef]

X. Lin and K. Otobe, �Real-time biology-image recognition using an artificial retina LSI,� Proceedings of OSA Annual Meeting and Exhibit 2000, pp. 111 (2000).

K. Kyuma, E. Lange, J. Ohta, A. Hermanns, B. Banish, and M. Oita �Artificial retinas � fast, versatile image processors,� Nature, 372(6502), 197-198 (1994).
[CrossRef]

H. Kage, W. T. Freeman, Y. Miyake, E. Funatsu, K. Tanaka, and K. Kyuma, �Artificial retina chips as on-chip image processors and gesture-oriented interfaces,� Opt. Eng. 38(12), 1979-1988 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Hough transform for detecting a straight-line.

Fig. 2.
Fig. 2.

Schematic structure of the ARC.

Fig. 3.
Fig. 3.

Examples of image processing by the ARC: (a) normal image, (b) edge extraction, and (c) binarization.

Fig. 4.
Fig. 4.

Input image (one cabbage): (a) normal image, (b) binarization, and (c) edge extraction

Fig. 5.
Fig. 5.

Experiment results: (a) in HT-I space, (b) in HT-II space, (c) in inverse HT space, and (d) extractive circles.

Fig. 6.
Fig. 6.

Input image (multiple cabbages): (a) normal image, (b) binarization, and (c) edge extraction.

Fig. 7
Fig. 7

Experiment results: (a) in HT-I space, (b) in HT-II space, (c) in inverse HT space, and (d) extractive circles.

Fig. 8.
Fig. 8.

Relation between the measurement values and estimation values

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ = H ( α 1 , , α n , θ ) = H c ( r , θ ) = r ,
ρ = { r + t cos ( θ α ) r + t cos ( θ α ) 0 r + t cos ( θ α ) r + t cos ( θ + π α ) < 0 ,
ρ = ρ ± r .

Metrics