Abstract

The tuning properties of pulsed narrowband THz radiation generated via optical rectification in periodically poled lithium niobate have been investigated. Using a disk-shaped periodically poled crystal tuning was easily accomplished by rotating the crystal around its axis and observing the generated THz radiation in forward direction. In this way no beam deflection during tuning was observed. The total tuning range extended from 180 GHz up to 830 GHz and was limited by the poling period of 127 µm which determines the maximum THz frequency in forward direction.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Katzenellenbogen and D. Grischkowsky, "Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface," Appl. Phys. Lett. 58, 222 (1991)
    [CrossRef]
  2. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011 (1990)
    [CrossRef]
  3. D. H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284 (1984)
    [CrossRef]
  4. P. Y. Han and X.-C. Zhang, "Coherent, broadband midinfrared terahertz beam sensors," Appl. Phys. Lett. 73, 3049 (1998)
    [CrossRef]
  5. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191 (2000)
    [CrossRef]
  6. Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505 (2000)
    [CrossRef]
  7. Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244 (2000)
    [CrossRef]
  8. Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, "Domain mapping of periodically poled lithium niobate via terahertz wave form analysis," Appl. Phys. Lett. 77, 2488 (2000)
    [CrossRef]
  9. C. Weiss, G. Torosyan, Y. Avetisyan and R. Beigang, "Generation of tunable narrowband surface-emitted THz-radiation in periodically poled Lithium Niobate," Opt. Lett. 26, 563 (2001)
    [CrossRef]
  10. M. Schall, H. Helm, and S. R. Keiding, "Far Infrared Properties of Electro-Optic Crystals Measured by THz Time-Domain Spectroscopy," Int. J. of Infrared and Millimeter Waves 20, 595 (1999)
    [CrossRef]
  11. C. Weiss, Y. Avetisyan, G. Torosyan and R. Beigang, "Experimental investigations and theoretical analysis of THz radiation generated via optical rectification in periodically poled nonlinear materials," to be published (2001)

Other

N. Katzenellenbogen and D. Grischkowsky, "Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal-semiconductor interface," Appl. Phys. Lett. 58, 222 (1991)
[CrossRef]

X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011 (1990)
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284 (1984)
[CrossRef]

P. Y. Han and X.-C. Zhang, "Coherent, broadband midinfrared terahertz beam sensors," Appl. Phys. Lett. 73, 3049 (1998)
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191 (2000)
[CrossRef]

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505 (2000)
[CrossRef]

Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244 (2000)
[CrossRef]

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, "Domain mapping of periodically poled lithium niobate via terahertz wave form analysis," Appl. Phys. Lett. 77, 2488 (2000)
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan and R. Beigang, "Generation of tunable narrowband surface-emitted THz-radiation in periodically poled Lithium Niobate," Opt. Lett. 26, 563 (2001)
[CrossRef]

M. Schall, H. Helm, and S. R. Keiding, "Far Infrared Properties of Electro-Optic Crystals Measured by THz Time-Domain Spectroscopy," Int. J. of Infrared and Millimeter Waves 20, 595 (1999)
[CrossRef]

C. Weiss, Y. Avetisyan, G. Torosyan and R. Beigang, "Experimental investigations and theoretical analysis of THz radiation generated via optical rectification in periodically poled nonlinear materials," to be published (2001)

Supplementary Material (1)

» Media 1: MOV (15425 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig.1.
Fig.1.

Schematic diagram of the PPLN crystal for THz-generation

Fig. 2.
Fig. 2.

Frequency of the generated THz radiation as a function of observation angle for a poling period Λ=127 µm

Fig. 3.
Fig. 3.

Schematic diagram of the circular PPLN crystal used in our experiments

Fig. 4.
Fig. 4.

Experimental set-up for THz generation in forward direction

Fig. 5.
Fig. 5.

Temporal pulse shape observed in forward direction

Fig. 6:
Fig. 6:

THz frequency observed in forward direction as a function of angle between the direction of propagation and poling (upper diagram). The solid line represents the theoretically obtained tuning characteristics. The lower diagram shows the relative bandwidth for different propagation angles. The solid line represents the calculated relative bandwidth, assuming a rectangular waveform and therefore neglecting the absorption effects.

Fig. 7.
Fig. 7.

Spectral amplitude obtained from the experimental observed waveform (Movie, 1.5 MB).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P z NL = d ( x ) · E 2 · f ( y , z ) · g ( t x v g ) .
Ω = c Λ · 1 n IR n THz · sin Φ
Ω = c Λ · cos α · 1 n IR n THz
( Δ Ω Ω ) Λ = C N ,

Metrics