Abstract

The influence of the precursor fields of a double resonance Lorentz model dielectric on ultrashort pulse autocorrelation measurements and the resultant dynamical pulse width evolution is presented.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.Bradley and G.H.C.New,�Ultrashort pulse measurements,� Proc..IEEE 62 ,313-345 (1974).
    [CrossRef]
  2. J.C.Diels,J.J.Fontaine,I.C.McMichael,and F.Simoni,�Control and measurement of ultrashort pulse shapes (in amplitude and phase)with femtosecond accuracy,� Appl..Opt.24 ,1270-1282 (1985).
    [CrossRef] [PubMed]
  3. F.Hache,T.J.Driscoll,M.Cavallari,and G.M.Gale,�Measurement of ultrashort pulse durations by interferometric autocorrelation:influence of various parameters,� Appl..Opt.35 ,3230-3236 (1996).
    [CrossRef] [PubMed]
  4. A.Baltuska,Z.Wei,M.S.Pshenichnikov,and D.A.Wiersma,�Optical pulse compression to 5 fs at a 1- MHz repetition rate,� Opt..Lett.22 ,102-104 (1997).
    [CrossRef] [PubMed]
  5. G.P.Agrawal,Nonlinear fiber optics (Academic,Boston,1989)Chapters 2-5.
  6. P.N.Butcher and D.Cotter,The elements of nonlinear optics (Cambridge U.Press,Cambridge,1990) Chap.2.
    [CrossRef]
  7. K.E.Oughstun and C.M.Balictsis,�Gaussian pulse propagation in a dispersive,absorbing dielectric,� Phys.Rev.Lett.77 ,2210-2213 (1996).
    [CrossRef] [PubMed]
  8. C.M.Balictsis and K.E.Oughstun,�Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear,causally dispersive medium,� Phys..Rev.E 55 ,1910-1921 (1997).
    [CrossRef]
  9. K.E.Oughstun and H.Xiao,�Failure of the quasimonochromatic approximation for ultrashort pulse propagation in a dispersive,attenuative medium,� Phys..Rev.Lett.78 ,642-645 (1997).
    [CrossRef]
  10. H.Xiao and K.E.Oughstun,�Failure of the group velocity description for ultrawideband pulse propagation in a double resonance Lorentz model dielectric,� J..Opt.Soc.Am.B 16 ,1773-1785 (1999).
    [CrossRef]
  11. K.E.Oughstun and G.C.Sherman,Electromagnetic pulse propagation in causal dielectrics (Springer- Verlag,Berlin,1994)Chapters 3 &9.
    [CrossRef]
  12. J.Van Bladel,Singular Electromagnetic Fields and Sources (Oxford U.Press,Oxford,1991)Chap.1.

Other (12)

J.Bradley and G.H.C.New,�Ultrashort pulse measurements,� Proc..IEEE 62 ,313-345 (1974).
[CrossRef]

J.C.Diels,J.J.Fontaine,I.C.McMichael,and F.Simoni,�Control and measurement of ultrashort pulse shapes (in amplitude and phase)with femtosecond accuracy,� Appl..Opt.24 ,1270-1282 (1985).
[CrossRef] [PubMed]

F.Hache,T.J.Driscoll,M.Cavallari,and G.M.Gale,�Measurement of ultrashort pulse durations by interferometric autocorrelation:influence of various parameters,� Appl..Opt.35 ,3230-3236 (1996).
[CrossRef] [PubMed]

A.Baltuska,Z.Wei,M.S.Pshenichnikov,and D.A.Wiersma,�Optical pulse compression to 5 fs at a 1- MHz repetition rate,� Opt..Lett.22 ,102-104 (1997).
[CrossRef] [PubMed]

G.P.Agrawal,Nonlinear fiber optics (Academic,Boston,1989)Chapters 2-5.

P.N.Butcher and D.Cotter,The elements of nonlinear optics (Cambridge U.Press,Cambridge,1990) Chap.2.
[CrossRef]

K.E.Oughstun and C.M.Balictsis,�Gaussian pulse propagation in a dispersive,absorbing dielectric,� Phys.Rev.Lett.77 ,2210-2213 (1996).
[CrossRef] [PubMed]

C.M.Balictsis and K.E.Oughstun,�Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear,causally dispersive medium,� Phys..Rev.E 55 ,1910-1921 (1997).
[CrossRef]

K.E.Oughstun and H.Xiao,�Failure of the quasimonochromatic approximation for ultrashort pulse propagation in a dispersive,attenuative medium,� Phys..Rev.Lett.78 ,642-645 (1997).
[CrossRef]

H.Xiao and K.E.Oughstun,�Failure of the group velocity description for ultrawideband pulse propagation in a double resonance Lorentz model dielectric,� J..Opt.Soc.Am.B 16 ,1773-1785 (1999).
[CrossRef]

K.E.Oughstun and G.C.Sherman,Electromagnetic pulse propagation in causal dielectrics (Springer- Verlag,Berlin,1994)Chapters 3 &9.
[CrossRef]

J.Van Bladel,Singular Electromagnetic Fields and Sources (Oxford U.Press,Oxford,1991)Chap.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Angular frequency dependence of the real and imaginary parts of the complex index of refraction for a double resonance Lorentz model dielectric (solid curves) and the spectral amplitudes for 1cycle, 5 cycle, and 10 cycle Van Bladel envelope pulses (shaded regions).

Fig. 2.
Fig. 2.

Numerically determined propagated field (upper diagram) and the corresponding second-order interferometric autocorrelation (lower diagram) using the exact dispersion model (solid curves) and the cubic dispersion approximation (dotted curves) of the complex wavenumber at 3 absorption depths into the double resonance Lorentz model dielectric.

Fig. 3.
Fig. 3.

Same as in figure 2, but at 5 absorption depths into the dispersive, lossy medium.

Fig. 4.
Fig. 4.

Same as in figure 2, but at 7 absorption depths into the dispersive, lossy medium.

Fig. 5.
Fig. 5.

Same as in figure 2, but at 10 absorption depths into the dispersive, lossy medium.

Fig. 6.
Fig. 6.

Numerically measured relative pulse width as a function of propagation distance (relative to the absorption depth) in a double resonance Lorentz model dielectric for several initial pulse widths.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n ( ω ) = ( 1 b 2 0 ω 2 ω 0 2 + 2 i δ 0 ω b 2 2 ω 2 ω 2 2 + 2 i δ 2 ω ) 1 2 .
A ( z , t ) = 1 2 π { i ia ia + u ˜ ( ω ω c ) exp [ i ( k ˜ ( ω ) z ω t ) ] }
k ˜ ( ω ) = j = 0 1 j ! k ˜ ( j ) ( ω c ) ( ω ω c ) j ,
k ˜ ( ω ) k ˜ ( ω c ) + k ˜ ( 1 ) ( ω c ) ( ω ω c ) + k ˜ ( 3 ) ( ω c ) 2 ! ( ω ω c ) 2 + k ˜ ( 3 ) ( ω c ) 3 ! ( ω ω c ) 3 .
A ( z , t ) = 1 2 π { i ia ia + u ~ ( ω ω c ) exp [ ( z / c ) ϕ ( ω , θ ) ] } ,
A ( z , t ) A S ( z , t ) + A m ( z , t ) + A B ( z , t )
A j ( z , t ) = a j ( c 2 πz ) 1 2 { i u ˜ ( ω j ω c ) [ ϕ ( ω j , θ ) ] 1 2 exp [ z c ϕ ( ω j , θ ) ] }
I A ( z , τ ) = { { A ( z , t ) + A ( z , t τ ) } 2 2 dt } { 16 A 4 ( z , t ) dt } ,

Metrics