Abstract

A fiber-optic extrinsic Fabry-Perot interferometer strain sensor (EFPI-S) of ls=2.5 cm sensor length using three-wavelength digital phase demodulation is demonstrated to exhibit <50 pm displacement resolution (< 2nm/m strain resolution) when measuring the cross expansion of a PZT-ceramic plate. The sensing (single-mode downlead-) and reflecting fibers are fused into a 150/360 µm capillary fiber where the fusion points define the sensor length. Readout is performed using an improved version of the previously described three-wavelength digital phase demodulation method employing an arctan-phase stepping algorithm. In the present experiments the strain sensitivity was varied via the mapping of the arctan - lookup table to the 16-Bit DA-converter range from 188.25 µε/V (6 Volt range 1130 µε) to 11.7 µε/Volt (range 70 µε).

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schmidt and N. Fürstenau, “Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999)
    [CrossRef]
  2. T. Melz, M. Frövel, V. Krajenski, M.A. de la Torre, H. Hanselka, and J. M. Pintado, “Modelling and control of adaptive mechanical structures”, in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik 268, 449–458 (1998)
  3. K.A. Murphy, M.A. Gunther, A. M. Vengsarkar, and R.O. Claus, “Quadrature phase shifted extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991)
    [CrossRef] [PubMed]
  4. V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
    [CrossRef]
  5. T. Li, R.G. May, A. Wang, and R.O. Claus, “Optical scanning extrinsic Fabry-Perot interferometer for absolute microdisplacement measurement,” Appl. Opt. 36, 8858–8861 (1997)
    [CrossRef]
  6. M. Schmidt, N. Fürstenau, W. Bock, and W. Urbanczyk, “Fiber-optic polarimetric strain sensor with three-wavelength digital phase demodulation,” Opt. Lett. 251334–1336 (2000)
    [CrossRef]
  7. N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic Sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997)
    [CrossRef]

2000 (1)

1999 (1)

1998 (1)

T. Melz, M. Frövel, V. Krajenski, M.A. de la Torre, H. Hanselka, and J. M. Pintado, “Modelling and control of adaptive mechanical structures”, in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik 268, 449–458 (1998)

1997 (2)

T. Li, R.G. May, A. Wang, and R.O. Claus, “Optical scanning extrinsic Fabry-Perot interferometer for absolute microdisplacement measurement,” Appl. Opt. 36, 8858–8861 (1997)
[CrossRef]

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic Sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997)
[CrossRef]

1995 (1)

V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
[CrossRef]

1991 (1)

Bhatia, V.

V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
[CrossRef]

Bock, W.

Claus, R.O.

T. Li, R.G. May, A. Wang, and R.O. Claus, “Optical scanning extrinsic Fabry-Perot interferometer for absolute microdisplacement measurement,” Appl. Opt. 36, 8858–8861 (1997)
[CrossRef]

V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
[CrossRef]

K.A. Murphy, M.A. Gunther, A. M. Vengsarkar, and R.O. Claus, “Quadrature phase shifted extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991)
[CrossRef] [PubMed]

de la Torre, M.A.

T. Melz, M. Frövel, V. Krajenski, M.A. de la Torre, H. Hanselka, and J. M. Pintado, “Modelling and control of adaptive mechanical structures”, in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik 268, 449–458 (1998)

Frövel, M.

T. Melz, M. Frövel, V. Krajenski, M.A. de la Torre, H. Hanselka, and J. M. Pintado, “Modelling and control of adaptive mechanical structures”, in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik 268, 449–458 (1998)

Fürstenau, N.

Goetze, W.

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic Sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997)
[CrossRef]

Grace, J. L.

V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
[CrossRef]

Greene, J.A.

V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
[CrossRef]

Gunther, M.A.

Hanselka, H.

T. Melz, M. Frövel, V. Krajenski, M.A. de la Torre, H. Hanselka, and J. M. Pintado, “Modelling and control of adaptive mechanical structures”, in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik 268, 449–458 (1998)

Horack, H.

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic Sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997)
[CrossRef]

Jones, M. E.

V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
[CrossRef]

Krajenski, V.

T. Melz, M. Frövel, V. Krajenski, M.A. de la Torre, H. Hanselka, and J. M. Pintado, “Modelling and control of adaptive mechanical structures”, in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik 268, 449–458 (1998)

Li, T.

May, R.G.

Melz, T.

T. Melz, M. Frövel, V. Krajenski, M.A. de la Torre, H. Hanselka, and J. M. Pintado, “Modelling and control of adaptive mechanical structures”, in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik 268, 449–458 (1998)

Murphy, K.A.

V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
[CrossRef]

K.A. Murphy, M.A. Gunther, A. M. Vengsarkar, and R.O. Claus, “Quadrature phase shifted extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991)
[CrossRef] [PubMed]

Pintado, J. M.

T. Melz, M. Frövel, V. Krajenski, M.A. de la Torre, H. Hanselka, and J. M. Pintado, “Modelling and control of adaptive mechanical structures”, in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik 268, 449–458 (1998)

Schmidt, M.

Schmidt, W.

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic Sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997)
[CrossRef]

Tran, T.A.

V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
[CrossRef]

Urbanczyk, W.

Vengsarkar, A. M.

Wang, A.

Appl. Opt. (1)

IEE Proc. Optoelectron. (1)

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, “Extrinsic Fabry-Perot interferometer vibration and acoustic Sensor systems for airport ground traffic monitoring,” IEE Proc. Optoelectron. 144, 134–144 (1997)
[CrossRef]

in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik (1)

T. Melz, M. Frövel, V. Krajenski, M.A. de la Torre, H. Hanselka, and J. M. Pintado, “Modelling and control of adaptive mechanical structures”, in: Gabbert, Ulrich (Eds.): Fortschritt-Berichte VDI : ser. no. 11, Schwin-gungstechnik 268, 449–458 (1998)

Opt. Lett. (3)

Smart Materials Struct. (1)

V. Bhatia, K.A. Murphy, R.O. Claus, M. E. Jones, J. L. Grace, T.A. Tran, and J.A. Greene, “Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors,” Smart Materials Struct. 4, 240–245 (1995)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig 1:
Fig 1:

Schematic of three - wavelength EFPI sensor system. SLD/ELED=light source, “2”=temperature sensor, “3”=temperature control, 2×2 and 3×1=directional couplers, Θ1,2,3=angles between interference filter normal and collimating grin lenses. Inset shows details of EFPI-S sensing element.

Figure 2:
Figure 2:

Two Extrinsic Fabry - Perot Interferometer strain sensors (sensing length l=24.5 mm and 50.7 mm) surface adhered to a piezo-electric (PZT) actuator (thickness 1 mm).

Figure 3:
Figure 3:

3-λ output signals with 1800 V PZT excitation at 10 Hz. Lower traces: interference signals; upper trace: phase demodulated signal ~ L(t) after DA-conversion.

Figure 4:
Figure 4:

High resolution strain measurement with PZT excitation Upp=40 mVolt at 40 Hz (Ch3). Demodulated signal amplitude (Ch4, upper trace) corresponds to strain amplitude (peak-peak) ε=4.5 nm/m.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U i ( t ) = U 0 ( R 1 + R 2 eff ) ( 1 μ i ( Φ i ) cos { Φ i ( t ) + Δ Φ 2 i } )
μ ( Φ ) = 2 R 1 R 2 eff R 1 + R 2 eff exp { Φ ( t ) 2 ( δλ 4 ln 2 λ ) 2 } .
Φ = arc tan [ U 1 U 3 U 1 + U 3 2 U 2 f ( δ Δ Φ ij ) ] ± m π
S Φ = ε Δ Φ = λ 4 πl S

Metrics