Abstract

We characterized the fluorescence intensity distribution within the epithelia and stroma of frozen human cervical tissues at the following excitation-emission wavelength pairs: 440, 525 nm and 365, 460 nm. The intensities at both excitation-emission wavelength pairs are significantly lower in the epithelia of severely dysplastic tissues, relative to that in normal and inflammatory tissues. Furthermore, there are small differences in (1) the epithelial intensity of severe dysplasia and mild dysplasia at 440, 525 nm and (2) the stromal intensity of inflammatory and severely dysplastic tissues at 365, 460 nm. A comparison of the ratio of intensities at 440, 525 nm and 365, 460 nm between the epithelia of each tissue type indicates that this ratio is lowest in severely dysplastic tissues. It is interesting to note that the epithelial and stromal intensities are comparable at 365, 460 nm; however, at 440, 525 nm, the epithelial intensity is more than a factor of two less that that of the stroma for all tissue types.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G.A. Wagnieres, W.M. Star and B.C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603-632 (1998).
    [PubMed]
  2. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Ann. Rev. Phys. Chem. 47, 555-606 (1996).
    [CrossRef]
  3. N. Ramanujam, “ Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2,1-29 (2000).
    [CrossRef]
  4. A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B: Biol. 31, 101-112 (1995).
    [CrossRef]
  5. M. Anidjar, O. Cussenot, J. Blais, O. Bourdon, S. Avrillier, D. Ettori, J.M. Villter, J. Fiet, P. Teillac, A. Le Duc, “Argon laser induced autofluorescence may distinguish between normal and tumor human urothelial cells: a microspectrofluorimetric study,” J. Urol. 155, 1771-1774 (1996).
    [CrossRef] [PubMed]
  6. T.J. Romer, M. Fitzmaurice, R.M. Cothren, R. Richards-Kortum, M.V. Sivak Jr, J.R. Kramer Jr, “Laser-Induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Amer. J. Gastroenterol. 90, 81-87 (1995).
  7. G.S. Fairman, M.H. Nathanson, A.B. West, L.I. Deckelbaum, L. Kelly, C.R. Kapadia, “Differences in laser-induced autofluorescence between adenomatous and hyperplastic polyps and normal colonic mucosa by confocal microscopy,” Digest. Dis. Sci. 40, 1261-1268 (1995)..8. G. Bottiroli, A.C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinellu, “Natural fluorescence of normal and neoplastic human colon: a comprehensice “ex vivo” study,” Lasers Surg. Med. 16, 48-60 (1995).
    [CrossRef]
  8. G. Bottiroli, A.C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinellu, “Natural fluorescence of normal and neoplastic human colon: a comprehensice “ex vivo” study,” Lasers Surg. Med. 16, 48-60 (1995).
    [CrossRef] [PubMed]
  9. F.N. Ghadially, W.J.P. Neish, H.C. Dawkins, “Mechanisms involved in the production of red fluorescence of human and experimental tumors,” J. Path. Bact. 85, 77-92 (1963).
    [CrossRef]
  10. B. Chance, N. Graham, V. Legallais, “Low temperature trapping method for cytochrome oxidase oxygen intermediates,” Anal. Biochem. 67, 552-579 (1975).
    [CrossRef] [PubMed]
  11. B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764-4771 (1979).
    [PubMed]
  12. B. Quistorff, J.C. Haselgrove, B. Chance, “High spatial resolution readout of 3-D metabolic organ structure: an automated, low-temperature redox ratio-scanning instrument,” Anal. Biochem. 148, 389-400 (1985).
    [CrossRef] [PubMed]
  13. L. Stryer, Biochemistry (W.H.FreemanandCompany,1988),Chap.8.
  14. C.K. Brookner, M. Follen, I. Boiko, J. Galvan, S.Thomsen, A. Malpica, S. Suzuki, R. Lotan, R.R. Richards-Kortum, “Autofluorescence patterns in short-term cultures of normal cervical tissue,” Photochem. Photobiol. 71, 730-736 (2000).
    [CrossRef] [PubMed]
  15. N. Ramanujam N, M.F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720-735 (1996).
    [CrossRef] [PubMed]
  16. T.C. Wright, R.J. Kurman, A. Ferenczy, “Cervical Intraepithelial Neoplasia” in Pathology of the Female Genital Tract, A. Blaustein, ed. (Springer-Verlag, New York, 1994).
  17. D. Fujimoto, “The structure of pyridinoline, a collagen crosslink,” Biochem. Biophys. Res. Comm. 76, 1124- 1129 (1977).
    [CrossRef] [PubMed]
  18. J.P. Freyer, “Rates of oxygen consumption for proliferating and quiescent cells isolated from multicellular tumor spheroids,” Adv. Exp. Med. Biol. 345, 335-342 (1994).
    [CrossRef] [PubMed]
  19. U. Utzinger, E.V. Trujillo, E.N. Atkinson, M.F. Mitchell, S.B. Cantor, R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects of tissue type, sample size, population and signal-to-noise ratio,” IEEE Trans. Biomed. 46, 1293-1303 (1999).
    [CrossRef]

Other

G.A. Wagnieres, W.M. Star and B.C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603-632 (1998).
[PubMed]

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Ann. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef]

N. Ramanujam, “ Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2,1-29 (2000).
[CrossRef]

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, L. Blanchard, “Steady state and time resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B: Biol. 31, 101-112 (1995).
[CrossRef]

M. Anidjar, O. Cussenot, J. Blais, O. Bourdon, S. Avrillier, D. Ettori, J.M. Villter, J. Fiet, P. Teillac, A. Le Duc, “Argon laser induced autofluorescence may distinguish between normal and tumor human urothelial cells: a microspectrofluorimetric study,” J. Urol. 155, 1771-1774 (1996).
[CrossRef] [PubMed]

T.J. Romer, M. Fitzmaurice, R.M. Cothren, R. Richards-Kortum, M.V. Sivak Jr, J.R. Kramer Jr, “Laser-Induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Amer. J. Gastroenterol. 90, 81-87 (1995).

G.S. Fairman, M.H. Nathanson, A.B. West, L.I. Deckelbaum, L. Kelly, C.R. Kapadia, “Differences in laser-induced autofluorescence between adenomatous and hyperplastic polyps and normal colonic mucosa by confocal microscopy,” Digest. Dis. Sci. 40, 1261-1268 (1995)..8. G. Bottiroli, A.C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinellu, “Natural fluorescence of normal and neoplastic human colon: a comprehensice “ex vivo” study,” Lasers Surg. Med. 16, 48-60 (1995).
[CrossRef]

G. Bottiroli, A.C. Croce, D. Locatelli, R. Marchesini, E. Pignoli, S. Tomatis, C. Cuzzoni, S. Di Palma, M. Dalfante, P. Spinellu, “Natural fluorescence of normal and neoplastic human colon: a comprehensice “ex vivo” study,” Lasers Surg. Med. 16, 48-60 (1995).
[CrossRef] [PubMed]

F.N. Ghadially, W.J.P. Neish, H.C. Dawkins, “Mechanisms involved in the production of red fluorescence of human and experimental tumors,” J. Path. Bact. 85, 77-92 (1963).
[CrossRef]

B. Chance, N. Graham, V. Legallais, “Low temperature trapping method for cytochrome oxidase oxygen intermediates,” Anal. Biochem. 67, 552-579 (1975).
[CrossRef] [PubMed]

B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples,” J. Biol. Chem. 254, 4764-4771 (1979).
[PubMed]

B. Quistorff, J.C. Haselgrove, B. Chance, “High spatial resolution readout of 3-D metabolic organ structure: an automated, low-temperature redox ratio-scanning instrument,” Anal. Biochem. 148, 389-400 (1985).
[CrossRef] [PubMed]

L. Stryer, Biochemistry (W.H.FreemanandCompany,1988),Chap.8.

C.K. Brookner, M. Follen, I. Boiko, J. Galvan, S.Thomsen, A. Malpica, S. Suzuki, R. Lotan, R.R. Richards-Kortum, “Autofluorescence patterns in short-term cultures of normal cervical tissue,” Photochem. Photobiol. 71, 730-736 (2000).
[CrossRef] [PubMed]

N. Ramanujam N, M.F. Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, A. Atkinson, R. Richards-Kortum, “Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720-735 (1996).
[CrossRef] [PubMed]

T.C. Wright, R.J. Kurman, A. Ferenczy, “Cervical Intraepithelial Neoplasia” in Pathology of the Female Genital Tract, A. Blaustein, ed. (Springer-Verlag, New York, 1994).

D. Fujimoto, “The structure of pyridinoline, a collagen crosslink,” Biochem. Biophys. Res. Comm. 76, 1124- 1129 (1977).
[CrossRef] [PubMed]

J.P. Freyer, “Rates of oxygen consumption for proliferating and quiescent cells isolated from multicellular tumor spheroids,” Adv. Exp. Med. Biol. 345, 335-342 (1994).
[CrossRef] [PubMed]

U. Utzinger, E.V. Trujillo, E.N. Atkinson, M.F. Mitchell, S.B. Cantor, R. Richards-Kortum, “Performance estimation of diagnostic tests for cervical precancer based on fluorescence spectroscopy: effects of tissue type, sample size, population and signal-to-noise ratio,” IEEE Trans. Biomed. 46, 1293-1303 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Average redox ratio index of rat livers that underwent carbogen, air and nitrogen inhalation

Fig. 2.
Fig. 2.

H&E stained section of a normal cervical tissue and the corresponding fluorescence images at two excitation-emission wavelength pairs: 440, 525 and 365, 460 nm.

Fig. 3.
Fig. 3.

The average fluorescence intensity as a function of tissue depth at (a) 440, 525 nm and (b) 365, 460 nm for a normal, inflammatory and severely dysplastic tissue.

Fig. 4.
Fig. 4.

Average fluorescence intensity at 440, 525 nm and 365, 460 nm for (a) the epithelium and (b) the stroma of normal, inflammatory, mildly dysplastic and severely dysplastic tissues.

Fig. 5.
Fig. 5.

The (a) average redox ratio index of the epithelia and (b) average ratio of the epithelial and stromal fluorescence intensity at 440, 525 nm and 365, 440 nm of the four different tissues.

Tables (1)

Tables Icon

Table 1. Fluorescence intensities at 460, 525 nm, 365, 460 nm and the redox ratio indices of two rat liver tissues (from the same rat) that underwent in vivo and in vitro freeze-trapping, respectively

Metrics