Abstract

We investigate efficient second harmonic generation in reverse proton exchanged Lithium Niobate waveguides. In z-cut crystals, the resulting buried and surface guides support TM and TE polarizations, respectively, and are coupled through the d31 nonlinear element. Numerically estimated conversion efficiencies in planar structures operating at 1.32µm reach 90% in 2cm or a normalized 14% µm/Wcm.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. See, for example, A. M. Prokhorov, U. S. Kuz'minov, O. A. Khachaturyan, Ferroelectric Thin Film Waveguides in Integrated Optics and Optoelectronics, Cambridge International Science Publ., 1996
  2. X. F. Cao, R. V. Ramaswamy, and R. Srivastava, "Characterization of annealed proton exchanged LiNbO 3 waveguides for nonlinear frequency conversion," J. Lightw. Technol. 10, 1302-1315 (1992)
    [CrossRef]
  3. J. L. Jackel, and J. J. Johnson, "Reverse exchange method for burying proton exchanged waveguides," Electron. Lett. 27, 1360-1361 (1991)
    [CrossRef]
  4. J. Olivares, J. M. Cabrera, "Modification of proton exchanged LiNbO 3 layers for guiding modes with ordinary polarization," Fiber Integ. Optics 12, 277-285 (1993)
    [CrossRef]
  5. J. Olivares, J. M. Cabrera, "Guided modes with ordinary refractive index in proton exchanged LiNbO 3 waveguides," Appl. Phys. Lett. 62, 2468-2470 (1993)
    [CrossRef]
  6. P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO 3 and LiTaO 3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
    [CrossRef]
  7. K. El Hadi, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, Y. N. Korkishko, V. A. Fedorov, and A. V. Kondrat'ev, "Ordinary and extraordinary waveguides realized by reverse proton exchange on LiTaO 3," Opt. Commun. 140, 23-26 (1997)
    [CrossRef]
  8. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, "Reverse proton exchange for buried waveguides in LiNbO 3," J. Opt. Soc. Am. A 15, 1838-1842 (1998)
    [CrossRef]
  9. J. Rams, J. Olivares, and J. M. Cabrera, "SHG-capabilities of reverse PE-LiNbO 3 waveguides," Electron. Lett. 33, 322-323 (1997)
    [CrossRef]
  10. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983)
  11. G. R. Hadley, "Transparent boundary condition for the beam propagation method," IEEE J. Quantum Electron. 28, 363-370 (1992)
    [CrossRef]
  12. G. J. Edwards and M. Lawrence, "A temperature dependent dispersion for congruently grown lithium niobate," Opt. & Quantum Electron. 16, 373-374 (1984)
    [CrossRef]
  13. K. Chikuma and S. Umegaki, "Characteristics of optical second-harmonic generation due to Cerenkov-radiation-type phase matching," J. Opt. Soc. Am. B 7, 768-775 (1990)
    [CrossRef]
  14. M. De Micheli, "Second harmonic generation in Cerenkov configuration" in Guided Wave Nonlinear Optics, D. B. Ostrowsky and R. Reinisch eds. (Kluwer Acad. Publishers., Dordrecht, NL 1992)
  15. G. Arvidsson and F. Laurell, "Nonlinear optical wavelength conversion in Ti:LiNbO 3 waveguides," Thin Solid Films 136, 29-36 (1986)
    [CrossRef]
  16. N. A. Sanford and J. M. Connors, "Optimization of the Cerenkov sum-frequency generation in proton-exchanged Mg:LiNbO 3 channel waveguides," J. Appl. Phys. 65, 1430-1437 (1989)
    [CrossRef]
  17. G. Tohmon, J. Ohya, K. Yamamoto, and T. Taniuchi, "Generation of ultraviolet picosecond pulses by frequency-doubling of laser diode in proton-exchanged MgO:LiNbO 3 waveguide," IEEE Phot. Techn. Lett. 2, 629-631 (1990)
    [CrossRef]
  18. W. Sohler and H. Suche, "Second-harmonic generation in Ti-diffused LiNbO 3 waveguides with 25% conversion efficiency," Appl. Phys. Lett. 33, 518-520 (1978)
    [CrossRef]

Other (18)

See, for example, A. M. Prokhorov, U. S. Kuz'minov, O. A. Khachaturyan, Ferroelectric Thin Film Waveguides in Integrated Optics and Optoelectronics, Cambridge International Science Publ., 1996

X. F. Cao, R. V. Ramaswamy, and R. Srivastava, "Characterization of annealed proton exchanged LiNbO 3 waveguides for nonlinear frequency conversion," J. Lightw. Technol. 10, 1302-1315 (1992)
[CrossRef]

J. L. Jackel, and J. J. Johnson, "Reverse exchange method for burying proton exchanged waveguides," Electron. Lett. 27, 1360-1361 (1991)
[CrossRef]

J. Olivares, J. M. Cabrera, "Modification of proton exchanged LiNbO 3 layers for guiding modes with ordinary polarization," Fiber Integ. Optics 12, 277-285 (1993)
[CrossRef]

J. Olivares, J. M. Cabrera, "Guided modes with ordinary refractive index in proton exchanged LiNbO 3 waveguides," Appl. Phys. Lett. 62, 2468-2470 (1993)
[CrossRef]

P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO 3 and LiTaO 3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998).
[CrossRef]

K. El Hadi, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, Y. N. Korkishko, V. A. Fedorov, and A. V. Kondrat'ev, "Ordinary and extraordinary waveguides realized by reverse proton exchange on LiTaO 3," Opt. Commun. 140, 23-26 (1997)
[CrossRef]

Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, "Reverse proton exchange for buried waveguides in LiNbO 3," J. Opt. Soc. Am. A 15, 1838-1842 (1998)
[CrossRef]

J. Rams, J. Olivares, and J. M. Cabrera, "SHG-capabilities of reverse PE-LiNbO 3 waveguides," Electron. Lett. 33, 322-323 (1997)
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983)

G. R. Hadley, "Transparent boundary condition for the beam propagation method," IEEE J. Quantum Electron. 28, 363-370 (1992)
[CrossRef]

G. J. Edwards and M. Lawrence, "A temperature dependent dispersion for congruently grown lithium niobate," Opt. & Quantum Electron. 16, 373-374 (1984)
[CrossRef]

K. Chikuma and S. Umegaki, "Characteristics of optical second-harmonic generation due to Cerenkov-radiation-type phase matching," J. Opt. Soc. Am. B 7, 768-775 (1990)
[CrossRef]

M. De Micheli, "Second harmonic generation in Cerenkov configuration" in Guided Wave Nonlinear Optics, D. B. Ostrowsky and R. Reinisch eds. (Kluwer Acad. Publishers., Dordrecht, NL 1992)

G. Arvidsson and F. Laurell, "Nonlinear optical wavelength conversion in Ti:LiNbO 3 waveguides," Thin Solid Films 136, 29-36 (1986)
[CrossRef]

N. A. Sanford and J. M. Connors, "Optimization of the Cerenkov sum-frequency generation in proton-exchanged Mg:LiNbO 3 channel waveguides," J. Appl. Phys. 65, 1430-1437 (1989)
[CrossRef]

G. Tohmon, J. Ohya, K. Yamamoto, and T. Taniuchi, "Generation of ultraviolet picosecond pulses by frequency-doubling of laser diode in proton-exchanged MgO:LiNbO 3 waveguide," IEEE Phot. Techn. Lett. 2, 629-631 (1990)
[CrossRef]

W. Sohler and H. Suche, "Second-harmonic generation in Ti-diffused LiNbO 3 waveguides with 25% conversion efficiency," Appl. Phys. Lett. 33, 518-520 (1978)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

RPE geometry with graphs of ordinary and extraordinary index distributions in z-cut LN.

Fig. 2.
Fig. 2.

Computed SHG conversion efficiency versus input power for a 1cm sample at 25°C. (a) CMT and (b) EFDBPM results in case of Gaussian excitation.

Fig. 3.
Fig. 3.

Contour maps of (a) FF and (b) SH intensity versus z and y for a Gaussian input at 10W/µm in a sample at temperature 25°C.

Fig. 4.
Fig. 4.

Phase-matching diagram at 25°C versus modal order m at SH. The horizontal lines refer to the FF modes, TE0 and leaky (or quasi-mode), respectively. The inset shows the corresponding TMm-TE0 overlap integral.

Fig. 5.
Fig. 5.

Contour maps of (a) FF and (b) SH intensity versus z and y for a TE0 input at 10W/µm.

Fig. 6.
Fig. 6.

Conversion efficiency versus input FF power (TE0 excitation) at (a) 25 and (b) 85°C, for samples 1cm (dashed line) and 2cm (solid line) in length.

Fig. 7.
Fig. 7.

Conversion efficiency versus temperature (TE0 excitation) at input powers of (a) 1W/µm and (b) 10W/µm, for samples 1cm (dashed line) and 2cm (solid line) in length.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E TE ω ( z , y ) = A ( y ) f ω ( z ) e i k 0 N ω y , E TM 2 ω ( z , y ) = ν B ν ( y ) f 2 ω ν ( z ) e i 2 k 0 N 2 ω ν y
2 E TE ω y 2 + 2 E TE ω z 2 + k 0 2 ( n o ω ( z ) ) 2 E TE ω + 2 k 0 2 d 15 E TM 2 ω ( E TE ω ) * = 0
2 E TM 2 ω y 2 + ( n es 2 ω ) 2 ( n os 2 ω ) 2 2 E TM 2 ω z 2 + 4 k 0 2 ( n e 2 ω ( z ) ) 2 E TM 2 ω + 4 k 0 2 d 31 ( E TE ω ) 2 = 0
n o , e ( z ) = n os , es + Δ n o , e exp ( z z 0 σ oi , ei ) 2

Metrics