Abstract

It is shown that strong-field atomic stabilization can occur at any frequency, that analytical methods exist that can describe all essential features of stabilization, that relativistic effects enhance the stabilization phenomenon, and that a simple physical picture exists that explains these properties. A necessary prelude is to show that the frequency properties of the three methods often conjoined by the KFR (Keldysh-Faisal-Reiss) label are quite different. Applicability of the SFA (Strong-Field Approximation) to stabilization at any frequency is shown, and verified by exhibiting close correspondence to numerical predictions by Popov et al. that also span both low and high frequencies.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Relativistic ionization of hydrogen by linearly polarized light

D. P. Crawford and H. R. Reiss
Opt. Express 2(7) 289-297 (1998)

Relativistic strong-field photoionization

H. R. Reiss
J. Opt. Soc. Am. B 7(4) 574-586 (1990)

High-frequency, high-intensity photoionization

H. R. Reiss
J. Opt. Soc. Am. B 13(2) 355-362 (1996)

References

  • View by:
  • |
  • |
  • |

  1. M. Gavrila, “Atomic structure and decay in high frequency fields,” in Atoms in intense laser fields, M. Gavrila, ed. (Academic, Boston, MA1992).
  2. H. R. Reiss, “Atomic transitions in intense fields and the breakdown of perturbation theory,” Phys. Rev. Lett. 25, 1149–1151 (1970).
    [Crossref]
  3. H. R. Reiss, “Nuclear beta decay induced by intense electromagnetic fields: forbidden transition examples,” Phys. Rev. C 27, 1229–1243 (1983).
    [Crossref]
  4. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz.47, 1945–1957 (1964) [Sov. Phys. JETP20, 1307–1314 (1965)].
  5. F. H. M. Faisal, “Multiple absorption of laser photons by atoms,” J. Phys. B 6, L89–L92 (1973).
    [Crossref]
  6. H. R. Reiss, “Effect of an intense electromagnetic field on a weakly bound system,” Phys. Rev. A 22, 1786–1813 (1980).
    [Crossref]
  7. W. C. Henneberger, “Perturbation method for atoms in intense light beams,” Phys. Rev. Lett. 21, 838–841 (1968).
    [Crossref]
  8. H. R. Reiss, “Energetic electrons in strong-field ionization”, Phys. Rev. A 54, R1765–R1768 (1996).
    [Crossref] [PubMed]
  9. M. Pont and M. Gavrila, “Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization,” Phys. Rev. Lett. 65, 2362–2365 (1990).
    [Crossref] [PubMed]
  10. H. R. Reiss, “High-frequency, high-intensity photoionization,” J. Opt. Soc. Am. B 13, 355–362 (1996).
    [Crossref]
  11. D. P. Crawford and H. R. Reiss, “Stabilization in relativistic photoionization with circularly polarized light,” Phys. Rev. A 50, 1844–1850 (1994).
    [Crossref] [PubMed]
  12. H. R. Reiss, “Relativistic strong-field photoionization,” J. Opt. Soc. Am. B 7, 574–586 (1990).
    [Crossref]
  13. H. R. Reiss and D. P. Crawford, “Relativistic photoionization,” in Ultrafast phenomena and interaction of superstrong laser fields with matter: nonlinear optics and high-field physics, M. V. Fedorov, V.M. Gordienko, V. V. Shuvalov, and V. D. Taranukhin, eds., Proc. SPIE3735, 148–157 (1998).
  14. A. M. Popov, O. V. Tikhonova, and E. A. Volkova, “Applicability of the Kramers-Henneberger approximation in the theory of strong-field ionization,” J. Phys. B 32, 3331–3345 (1999).
    [Crossref]
  15. H. R. Reiss, “Frequency and polarization effects in stabilization,” Phys. Rev. A 46, 391–394 (1992).
    [Crossref] [PubMed]
  16. H. R. Reiss, “Physical basis for strong-field stabilization of atoms against ionization,” Las. Phys. 7, 543–550 (1997).
  17. N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V·zquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
    [Crossref] [PubMed]
  18. H. R. Reiss, “Dipole-approximation magnetic fields in strong laser beams,” Phys. Rev. A 63, 013409 (2001).
    [Crossref]

2001 (1)

H. R. Reiss, “Dipole-approximation magnetic fields in strong laser beams,” Phys. Rev. A 63, 013409 (2001).
[Crossref]

2000 (1)

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V·zquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[Crossref] [PubMed]

1999 (1)

A. M. Popov, O. V. Tikhonova, and E. A. Volkova, “Applicability of the Kramers-Henneberger approximation in the theory of strong-field ionization,” J. Phys. B 32, 3331–3345 (1999).
[Crossref]

1997 (1)

H. R. Reiss, “Physical basis for strong-field stabilization of atoms against ionization,” Las. Phys. 7, 543–550 (1997).

1996 (2)

H. R. Reiss, “Energetic electrons in strong-field ionization”, Phys. Rev. A 54, R1765–R1768 (1996).
[Crossref] [PubMed]

H. R. Reiss, “High-frequency, high-intensity photoionization,” J. Opt. Soc. Am. B 13, 355–362 (1996).
[Crossref]

1994 (1)

D. P. Crawford and H. R. Reiss, “Stabilization in relativistic photoionization with circularly polarized light,” Phys. Rev. A 50, 1844–1850 (1994).
[Crossref] [PubMed]

1992 (1)

H. R. Reiss, “Frequency and polarization effects in stabilization,” Phys. Rev. A 46, 391–394 (1992).
[Crossref] [PubMed]

1990 (2)

H. R. Reiss, “Relativistic strong-field photoionization,” J. Opt. Soc. Am. B 7, 574–586 (1990).
[Crossref]

M. Pont and M. Gavrila, “Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization,” Phys. Rev. Lett. 65, 2362–2365 (1990).
[Crossref] [PubMed]

1983 (1)

H. R. Reiss, “Nuclear beta decay induced by intense electromagnetic fields: forbidden transition examples,” Phys. Rev. C 27, 1229–1243 (1983).
[Crossref]

1980 (1)

H. R. Reiss, “Effect of an intense electromagnetic field on a weakly bound system,” Phys. Rev. A 22, 1786–1813 (1980).
[Crossref]

1973 (1)

F. H. M. Faisal, “Multiple absorption of laser photons by atoms,” J. Phys. B 6, L89–L92 (1973).
[Crossref]

1970 (1)

H. R. Reiss, “Atomic transitions in intense fields and the breakdown of perturbation theory,” Phys. Rev. Lett. 25, 1149–1151 (1970).
[Crossref]

1968 (1)

W. C. Henneberger, “Perturbation method for atoms in intense light beams,” Phys. Rev. Lett. 21, 838–841 (1968).
[Crossref]

Crawford, D. P.

D. P. Crawford and H. R. Reiss, “Stabilization in relativistic photoionization with circularly polarized light,” Phys. Rev. A 50, 1844–1850 (1994).
[Crossref] [PubMed]

H. R. Reiss and D. P. Crawford, “Relativistic photoionization,” in Ultrafast phenomena and interaction of superstrong laser fields with matter: nonlinear optics and high-field physics, M. V. Fedorov, V.M. Gordienko, V. V. Shuvalov, and V. D. Taranukhin, eds., Proc. SPIE3735, 148–157 (1998).

Faisal, F. H. M.

F. H. M. Faisal, “Multiple absorption of laser photons by atoms,” J. Phys. B 6, L89–L92 (1973).
[Crossref]

Gavrila, M.

M. Pont and M. Gavrila, “Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization,” Phys. Rev. Lett. 65, 2362–2365 (1990).
[Crossref] [PubMed]

M. Gavrila, “Atomic structure and decay in high frequency fields,” in Atoms in intense laser fields, M. Gavrila, ed. (Academic, Boston, MA1992).

Henneberger, W. C.

W. C. Henneberger, “Perturbation method for atoms in intense light beams,” Phys. Rev. Lett. 21, 838–841 (1968).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz.47, 1945–1957 (1964) [Sov. Phys. JETP20, 1307–1314 (1965)].

Knight, P. L.

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V·zquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[Crossref] [PubMed]

Kylstra, N. J.

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V·zquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[Crossref] [PubMed]

Patel, A.

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V·zquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[Crossref] [PubMed]

Pont, M.

M. Pont and M. Gavrila, “Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization,” Phys. Rev. Lett. 65, 2362–2365 (1990).
[Crossref] [PubMed]

Popov, A. M.

A. M. Popov, O. V. Tikhonova, and E. A. Volkova, “Applicability of the Kramers-Henneberger approximation in the theory of strong-field ionization,” J. Phys. B 32, 3331–3345 (1999).
[Crossref]

Reiss, H. R.

H. R. Reiss, “Dipole-approximation magnetic fields in strong laser beams,” Phys. Rev. A 63, 013409 (2001).
[Crossref]

H. R. Reiss, “Physical basis for strong-field stabilization of atoms against ionization,” Las. Phys. 7, 543–550 (1997).

H. R. Reiss, “High-frequency, high-intensity photoionization,” J. Opt. Soc. Am. B 13, 355–362 (1996).
[Crossref]

H. R. Reiss, “Energetic electrons in strong-field ionization”, Phys. Rev. A 54, R1765–R1768 (1996).
[Crossref] [PubMed]

D. P. Crawford and H. R. Reiss, “Stabilization in relativistic photoionization with circularly polarized light,” Phys. Rev. A 50, 1844–1850 (1994).
[Crossref] [PubMed]

H. R. Reiss, “Frequency and polarization effects in stabilization,” Phys. Rev. A 46, 391–394 (1992).
[Crossref] [PubMed]

H. R. Reiss, “Relativistic strong-field photoionization,” J. Opt. Soc. Am. B 7, 574–586 (1990).
[Crossref]

H. R. Reiss, “Nuclear beta decay induced by intense electromagnetic fields: forbidden transition examples,” Phys. Rev. C 27, 1229–1243 (1983).
[Crossref]

H. R. Reiss, “Effect of an intense electromagnetic field on a weakly bound system,” Phys. Rev. A 22, 1786–1813 (1980).
[Crossref]

H. R. Reiss, “Atomic transitions in intense fields and the breakdown of perturbation theory,” Phys. Rev. Lett. 25, 1149–1151 (1970).
[Crossref]

H. R. Reiss and D. P. Crawford, “Relativistic photoionization,” in Ultrafast phenomena and interaction of superstrong laser fields with matter: nonlinear optics and high-field physics, M. V. Fedorov, V.M. Gordienko, V. V. Shuvalov, and V. D. Taranukhin, eds., Proc. SPIE3735, 148–157 (1998).

Roso, L.

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V·zquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[Crossref] [PubMed]

Tikhonova, O. V.

A. M. Popov, O. V. Tikhonova, and E. A. Volkova, “Applicability of the Kramers-Henneberger approximation in the theory of strong-field ionization,” J. Phys. B 32, 3331–3345 (1999).
[Crossref]

V·zquez de Aldana, J. R.

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V·zquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[Crossref] [PubMed]

Volkova, E. A.

A. M. Popov, O. V. Tikhonova, and E. A. Volkova, “Applicability of the Kramers-Henneberger approximation in the theory of strong-field ionization,” J. Phys. B 32, 3331–3345 (1999).
[Crossref]

Worthington, R. A.

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V·zquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. B (2)

A. M. Popov, O. V. Tikhonova, and E. A. Volkova, “Applicability of the Kramers-Henneberger approximation in the theory of strong-field ionization,” J. Phys. B 32, 3331–3345 (1999).
[Crossref]

F. H. M. Faisal, “Multiple absorption of laser photons by atoms,” J. Phys. B 6, L89–L92 (1973).
[Crossref]

Las. Phys. (1)

H. R. Reiss, “Physical basis for strong-field stabilization of atoms against ionization,” Las. Phys. 7, 543–550 (1997).

Phys. Rev. A (5)

H. R. Reiss, “Frequency and polarization effects in stabilization,” Phys. Rev. A 46, 391–394 (1992).
[Crossref] [PubMed]

D. P. Crawford and H. R. Reiss, “Stabilization in relativistic photoionization with circularly polarized light,” Phys. Rev. A 50, 1844–1850 (1994).
[Crossref] [PubMed]

H. R. Reiss, “Effect of an intense electromagnetic field on a weakly bound system,” Phys. Rev. A 22, 1786–1813 (1980).
[Crossref]

H. R. Reiss, “Energetic electrons in strong-field ionization”, Phys. Rev. A 54, R1765–R1768 (1996).
[Crossref] [PubMed]

H. R. Reiss, “Dipole-approximation magnetic fields in strong laser beams,” Phys. Rev. A 63, 013409 (2001).
[Crossref]

Phys. Rev. C (1)

H. R. Reiss, “Nuclear beta decay induced by intense electromagnetic fields: forbidden transition examples,” Phys. Rev. C 27, 1229–1243 (1983).
[Crossref]

Phys. Rev. Lett. (4)

H. R. Reiss, “Atomic transitions in intense fields and the breakdown of perturbation theory,” Phys. Rev. Lett. 25, 1149–1151 (1970).
[Crossref]

M. Pont and M. Gavrila, “Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization,” Phys. Rev. Lett. 65, 2362–2365 (1990).
[Crossref] [PubMed]

W. C. Henneberger, “Perturbation method for atoms in intense light beams,” Phys. Rev. Lett. 21, 838–841 (1968).
[Crossref]

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V·zquez de Aldana, and L. Roso, “Breakdown of stabilization of atoms with intense, high-frequency laser pulses,” Phys. Rev. Lett. 85, 1835–1838 (2000).
[Crossref] [PubMed]

Other (3)

H. R. Reiss and D. P. Crawford, “Relativistic photoionization,” in Ultrafast phenomena and interaction of superstrong laser fields with matter: nonlinear optics and high-field physics, M. V. Fedorov, V.M. Gordienko, V. V. Shuvalov, and V. D. Taranukhin, eds., Proc. SPIE3735, 148–157 (1998).

M. Gavrila, “Atomic structure and decay in high frequency fields,” in Atoms in intense laser fields, M. Gavrila, ed. (Academic, Boston, MA1992).

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz.47, 1945–1957 (1964) [Sov. Phys. JETP20, 1307–1314 (1965)].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Atomic hydrogen monochromatic ionization rates in a circularly polarized laser beam.

Fig. 2.
Fig. 2.

Value of the stabilization intensity as a function of field frequency for ionization from a hydrogenic atom with binding energy 0.75 eV. The Popov et al. data are from Ref. [14], and proportions in this figure mimic those of Fig. 10 of this reference. See text for explanation of the gap in SFA results.

Fig. 3.
Fig. 3.

Ionization by circularly polarized light. (a) Nonrelativistically, the electron circulates around the atom in a circular orbit in a plane perpendicular to the propagation direction, with its classical energy and radius of motion. (b) Relativistically, the plane of the orbit is displaced forward by the momentum of the number of photons that must be absorbed to supply the ponderomotive energy of the electron.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

i t Φ = H 0 Φ , H 0 = 1 2 2 + V ( r ) ,
i t Ψ = ( H 0 + H I ) Ψ , H I = i c A · + 1 2 c 2 A 2 .
lim t Ψ ( + ) = Φ , lim t + Ψ ( ) = Φ .
S fi = lim t + ( Φ f , Ψ i ( + ) ) , δ fi = lim t ( Φ f , Ψ i ( + ) ) ,
( S 1 ) fi = + dt t ( Φ f , Ψ i ( + ) ) = i + dt ( Φ f , H I Ψ i ) ,
S fi = lim t ( Ψ f ( ) , Φ i ) ,
( S 1 ) fi = i dt ( Ψ f , H I Φ i ) ,
H I H I length = E · r .
Ψ f Ψ f Volk ,
Φ f Φ f free ,
Ψ i ( r , t ) = ( U KH ) 1 Φ i ( r + α , t ) ,
Φ i ( r + α , t ) Φ i ( r , t ) .
( S 1 ) fi F = i dt ( Φ f free , H I ( U KH ) 1 Φ i ( r , t ) ) ,
Ψ f Ψ f Volk .
( S 1 ) fi = i c d 4 x Ψ f ¯ A μ γ μ Φ i ,

Metrics