Abstract

The relationships between certain important nonclassical states of the quantized field and the coherent states associated with the SU(2) and SU(1,1) Lie groups and associated Lie algebras is briefly reviewed. As an example of the utility of group theoretical methods in quantum optics, a method for generating maximally entangled photonic states is discussed. These states may be of great importance for achieving Heisenberg-limited interferometry and in beating the diffraction limit in lithography.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. G. Wybourne, "The 'Gruppen Pest' yesterday, today, and tomorrow," Intl. J. Quant. Chem. Symp. 7, 35-43 (1973).
    [CrossRef]
  2. K. W�dkiewicz and J. H. Eberly, "Coherent states, squeezed fluctuations, and the SU(2) and SU(1,1) groups in quantum optics," J. Opt. Soc. Am. B 2, 458-466 (1985).
    [CrossRef]
  3. A. M. Perelomov, "Coherent states for an arbitrary Lie group," Commun. Math. Phys. 26, 222-236 (1972)
    [CrossRef]
  4. A. O. Barut and L. Girardello, "New 'coherent' states associated with non-compact groups," Commun. Math. Phys. 21, 41-55 (1971).
    [CrossRef]
  5. C. C. Gerry and E. E. Hach, "Generation of even and odd coherent states in a competitive two-photon process," Phys. Lett. A 117, 185-189 (1993).
    [CrossRef]
  6. V. Buzek and P. L. Knight, "Quantum interference, superposition states of light, and nonclassical effects," in Progress in Optics XXXIV, E. Wolf, ed. (Elesevier, Amsterdam, 1995).
  7. G. S. Agarwal, "Nonclassical statistics of fields in pair coherent states," J. Opt. Soc. Am. B 5, 1940-1947 (1988).
    [CrossRef]
  8. R. A. Campos, B. E. A. Saleh, and M. C. Teich, "Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics," Phys. Rev. A. 40, 1371-1348 (1989).
    [CrossRef] [PubMed]
  9. J. M. Radcliffe, "Some properties of spin coherent states," J. Phys. A 4, 313-323 (1971).
    [CrossRef]
  10. B. Yurke and D. Stoler, "Quantum behavior of a four-way mixer operated in nonlinear regime," Phys. Rev. A 35, 4846-4849 (1987).
    [CrossRef] [PubMed]
  11. C. C. Gerry, "Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime," Phys.Rev.A 61, 043811-1-043811-7 (2000).
    [CrossRef]
  12. K. M�lmer and A. S�rensen, "Multiparticle entanglement of hot trapped ions," Phys. Rev. Lett. 82, 1835-1838 (1999).
    [CrossRef]
  13. A. Boto et al., "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-2736 (2000).
    [CrossRef] [PubMed]

Other (13)

B. G. Wybourne, "The 'Gruppen Pest' yesterday, today, and tomorrow," Intl. J. Quant. Chem. Symp. 7, 35-43 (1973).
[CrossRef]

K. W�dkiewicz and J. H. Eberly, "Coherent states, squeezed fluctuations, and the SU(2) and SU(1,1) groups in quantum optics," J. Opt. Soc. Am. B 2, 458-466 (1985).
[CrossRef]

A. M. Perelomov, "Coherent states for an arbitrary Lie group," Commun. Math. Phys. 26, 222-236 (1972)
[CrossRef]

A. O. Barut and L. Girardello, "New 'coherent' states associated with non-compact groups," Commun. Math. Phys. 21, 41-55 (1971).
[CrossRef]

C. C. Gerry and E. E. Hach, "Generation of even and odd coherent states in a competitive two-photon process," Phys. Lett. A 117, 185-189 (1993).
[CrossRef]

V. Buzek and P. L. Knight, "Quantum interference, superposition states of light, and nonclassical effects," in Progress in Optics XXXIV, E. Wolf, ed. (Elesevier, Amsterdam, 1995).

G. S. Agarwal, "Nonclassical statistics of fields in pair coherent states," J. Opt. Soc. Am. B 5, 1940-1947 (1988).
[CrossRef]

R. A. Campos, B. E. A. Saleh, and M. C. Teich, "Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics," Phys. Rev. A. 40, 1371-1348 (1989).
[CrossRef] [PubMed]

J. M. Radcliffe, "Some properties of spin coherent states," J. Phys. A 4, 313-323 (1971).
[CrossRef]

B. Yurke and D. Stoler, "Quantum behavior of a four-way mixer operated in nonlinear regime," Phys. Rev. A 35, 4846-4849 (1987).
[CrossRef] [PubMed]

C. C. Gerry, "Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime," Phys.Rev.A 61, 043811-1-043811-7 (2000).
[CrossRef]

K. M�lmer and A. S�rensen, "Multiparticle entanglement of hot trapped ions," Phys. Rev. Lett. 82, 1835-1838 (1999).
[CrossRef]

A. Boto et al., "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-2736 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (45)

Equations on this page are rendered with MathJax. Learn more.

z 1 2 + z 2 2 ,
z 1 2 z 2 2 .
[ J + , J ] = 2 J 3 , [ J 3 , J ± ] = ± J ± ,
C 2 = J 3 2 + 1 2 ( J + J + J J + ) ,
[ K + , K ] = 2 K 0 , [ K 0 , K ± ] = ± K ± .
C 11 = K 0 2 1 2 ( K + K + K K + ) .
C 2 j , m = j ( j + 1 ) j , m , J 3 j , m = m j , m
J ± j , m = ( j m ) ( j ± m + 1 ) j , m ± 1 ,
j = 1 2 , 1 , 3 2 , 2 , , m = j , j + 1 , , j .
C 11 k , m = k ( k 1 ) k , m , K 0 k , m = ( k + m ) k , m ,
K + k , m = ( m + 1 ) ( m + 2 k ) k , m + 1 ,
K k , m = m ( m + 2 k 1 ) k , m 1 ,
k = 1 2 , 1 , 3 2 , 2 , ; m = 0 , 1 , 2 , .
K 0 = 1 2 ( a + a + 1 2 ) , K + = 1 2 a + 2 , K = 1 2 a 2 ,
n k , m for n = 2 ( m + k ) 1 2 .
ξ , k = S ( z ) k , 0
ξ , k = ( 1 ξ 2 ) k m = 0 [ Γ ( 2 k + m ) m ! Γ ( 2 k ) ] 1 2 ξ m k , m
ξ sv = 1 cosh ( θ 2 ) m = 0 ( 1 ) m ( 2 m ) ! 2 m m ! e im ϕ ( tanh ( θ 2 ) ) m 2 m ,
H I = i ( λ a + 2 λ * a 2 ) = 2 i ( λ K + λ * K )
U I ( t ) = exp [ iH I t ] = exp [ 2 t ( λ K + λ * K ) ] ,
K η , k = η η , k ,
η , k = N k m = 0 η m m ! Γ ( 2 k + m ) k , m
N k = [ Γ ( 2 k ) η 2 k + 1 I 2 k 1 ( 2 η ) ] 1 2 ,
η , 1 4 = N + ( α + α ) ,
η , 3 4 = N ( α α ) ,
N ± = [ 2 ± 2 exp ( 2 α 2 ) ] 1 2 .
ρ t = i [ H I , ρ ] κ 2 ( a + 2 a 2 ρ 2 a 2 ρ a + 2 + ρ a + 2 a 2 )
= 2 [ λ K + λ * K , ρ ] 2 κ ( K + K ρ 2 K ρ K + + ρ K + K ) ,
K 0 = 1 2 ( a + a + b + b + 1 ) , K + = a + b + , K = ab
C 11 = 1 4 ( Δ 2 1 ) , Δ = a + a b + b .
n + q , n k , m , k = 1 2 ( 1 + q ) , m = n .
ξ , 1 2 ( 1 + q ) = ( 1 ξ 2 ) ( 1 + q ) 2 n = 0 [ ( n + q ) ! n ! q ! ] 1 2 ξ n n + q , n .
ξ tmsv = 1 cosh θ n = 0 ( 1 ) n e in ϕ [ tanh ( θ 2 ) ] n n , n .
H I = i ( λ a + b + λ ab ) = i ( λ K + λ * K ) .
η , 1 2 ( 1 + q ) = N q n = 0 η n [ n ! ( n + q ) ! ] n + q , n ,
N q = [ q ! η q I q ( 2 η ) ] 1 2 .
J 3 = 1 2 ( a + a b + b ) , J + = a + b , J = ab + , J 0 = 1 2 ( a + a + b + b )
j , m n a n b , j = 1 2 ( n a + n b ) , m = 1 2 ( n a n b ) ,
U 1 ( 2 ) ( θ ) = exp ( i θ J 1 ( 2 ) )
H I = i ( λ a + b λ * ab + ) = i ( λ J + λ * J ) .
ζ , j = exp ( β J + β * J ) j , j
= ( 1 + ζ 2 ) j m = j j ( 2 j j + m ) 1 2 ζ j + m j , m
= ( 1 + ζ 2 ) N n = 0 N ( N n ) 1 2 ζ n n , N n
H I = Ω 4 ( a + b + ab + ) 2 = Ω J 1 2 .
1 2 ( n 0 + e i Φ n 0 n ) , Φ n = ( n + 1 ) π 2 ,

Metrics