Abstract

We demonstrated a pulse-to-pulse frequency-tunable LiNbO3 terahertz-wave parametric oscillator, pumped with a Q-switched Nd:YAG laser. Rapid tuning from 1 to 2 THz, with random frequency accessibility, was achieved by rotating the pump beam angle using an optical beam scanner and a telescope.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R.A. Cheville and D. Grischkowsky. "Far-infrared terahertz time-domain spectroscopy of flames," Opt. Lett. 20, 1646-1648 (1995)
    [CrossRef] [PubMed]
  2. Committee on Free ElectronLasers and National ResearchCouncil Other Advanced Coherent LightSources, editors. Free Electron Lasers and Other Advanced source of Light, (National Academy Press, Washington, DC, 1994) pp. 24-31.
  3. Susumu Komiyama. "Far-infrared emission from population-inverted hot-carrier system in p-Ge," Phys. Rev. Lett. 48, 271-273 (1982)
    [CrossRef]
  4. K. Kawase, M. Sato, T. Taniuchi, and H. Ito. "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett. 68, 2483-2485 (1996)
    [CrossRef]
  5. A. Morikawa, K. Kawase, J. Shikata, T. Taniuchi, and H.Ito. "Parametric THz-wave generation using trapezoidal LiNbO3 crystal," In Terahertz Spectroscopy and Applications II, J. Martyn Chamberlain, ed., Proc. SPIE. 3828, 302-310 (1999)
  6. Steven T. Yang and Stephan P. Velsko. "Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate," Opt. Lett. 24, 133-135 (1999)
    [CrossRef]
  7. Kodo Kawase, Junichi Shikata, Hiroaki Minamide, Kazuhiro Imai, and Hiromasa Ito. "Arrayed silicon prism coupler for a THz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001)
    [CrossRef]
  8. Jun-ichi Shikata, Ken-ichi Karino, Hiromasa Ito, and Kodo Kawase. "Tunable terahertz-wave generation from MgO:LiNbO3 optical parametric oscillator," in Advanced Solid-state Lasers. OSA Trends in Optics and Photonics, MartinM. Fejer, Hagop Injeyan, and Ursula Keller, eds, Vol. 26 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1999) pp. 481-486.
  9. H. Minamide, K. Kawase, K. Imai, A. Sato, and H. Ito. "Widely tunable MgO:LiNbO3 THz parametric oscillator and an application to THz spectroscopic system," In Conference on Lasers and Electro-Optics, OSA Technical Digest, page 356, (Optical Society of America, Washington, D.C., 2000)
  10. Kazuhiro Imai, Kodo Kawase, Jun ichi Shikata, Hiroaki Minamide, and Hiromasa Ito. "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001)
    [CrossRef]
  11. K. Kawase, M.S ato, K. Nakamura, T. Taniuchi, and H. Ito. "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997)
    [CrossRef]

Other

R.A. Cheville and D. Grischkowsky. "Far-infrared terahertz time-domain spectroscopy of flames," Opt. Lett. 20, 1646-1648 (1995)
[CrossRef] [PubMed]

Committee on Free ElectronLasers and National ResearchCouncil Other Advanced Coherent LightSources, editors. Free Electron Lasers and Other Advanced source of Light, (National Academy Press, Washington, DC, 1994) pp. 24-31.

Susumu Komiyama. "Far-infrared emission from population-inverted hot-carrier system in p-Ge," Phys. Rev. Lett. 48, 271-273 (1982)
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito. "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett. 68, 2483-2485 (1996)
[CrossRef]

A. Morikawa, K. Kawase, J. Shikata, T. Taniuchi, and H.Ito. "Parametric THz-wave generation using trapezoidal LiNbO3 crystal," In Terahertz Spectroscopy and Applications II, J. Martyn Chamberlain, ed., Proc. SPIE. 3828, 302-310 (1999)

Steven T. Yang and Stephan P. Velsko. "Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate," Opt. Lett. 24, 133-135 (1999)
[CrossRef]

Kodo Kawase, Junichi Shikata, Hiroaki Minamide, Kazuhiro Imai, and Hiromasa Ito. "Arrayed silicon prism coupler for a THz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001)
[CrossRef]

Jun-ichi Shikata, Ken-ichi Karino, Hiromasa Ito, and Kodo Kawase. "Tunable terahertz-wave generation from MgO:LiNbO3 optical parametric oscillator," in Advanced Solid-state Lasers. OSA Trends in Optics and Photonics, MartinM. Fejer, Hagop Injeyan, and Ursula Keller, eds, Vol. 26 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1999) pp. 481-486.

H. Minamide, K. Kawase, K. Imai, A. Sato, and H. Ito. "Widely tunable MgO:LiNbO3 THz parametric oscillator and an application to THz spectroscopic system," In Conference on Lasers and Electro-Optics, OSA Technical Digest, page 356, (Optical Society of America, Washington, D.C., 2000)

Kazuhiro Imai, Kodo Kawase, Jun ichi Shikata, Hiroaki Minamide, and Hiromasa Ito. "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001)
[CrossRef]

K. Kawase, M.S ato, K. Nakamura, T. Taniuchi, and H. Ito. "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the 1.064 µm-pumped LiNbO3 frequency-agile TPO; FPI: Metal-mesh scanning Fabry-Perot interferometer, L1: f=1000 mm lens for pump beam focusing, L2, L3: f=200 mm lenses for the 1-to-1 telescope, PC: The computer used for scanner control, k p , k T , and k i : wave vectors for the pump, THz, and idler waves.

Fig. 2.
Fig. 2.

Measured output characteristics of the THz-wave (circles) and idler wave (triangles) from a LiNbO3 TPO at a fixed pump energy (20 mJ/pulse).

Fig. 3.
Fig. 3.

Fabry-Perot scans of the THz-wave. The solid line shows the Fabry-Perot scan obtained with a pump incidence angle θIN of 1.73 degrees. The wavelength was 167 µm. The dashed line shows the scan obtained with an angle of 1.49 degrees. The wavelength was 193 µm.

Fig. 4.
Fig. 4.

Pulse trains passed through a Fabry-Perot interferometer with a displacement of 49 µm. (a) The pump incidence angle, θIN , was fixed at 1.73 degrees. (b) θIN was fixed at 1.49 degrees. (c) θIN was varied between 1.73 and 1.49 degrees with a 25-Hz square-wave signal to the optical scanner.

Metrics