Abstract

We investigate the plasmon resonances of interacting silver nanowires with a 50 nm diameter. Both non–touching and intersecting configurations are investigated. While individual cylinders exhibit a single plasmon resonance, we observe much more complex spectra of resonances for interacting structures. The number and magnitude of the different resonances depend on the illumination direction and on the distance between the particles. For very small separations, we observe a dramatic field enhancement between the particles, where the electric field amplitude reaches a hundredfold of the illumination. A similar enhancement is observed in the grooves created in slightly intersecting particles. The topology of these different resonances is related to the induced polarization charges. The implication of these results to surface enhanced Raman scattering (SERS) are discussed.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Bromann, C. Félix, H. Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern, "Controlled Deposition of Size-Selected Silver Nanoclusters," Science 274, 956-958 (1996).
    [CrossRef] [PubMed]
  2. K. Abe, T. Hanada, Y. Yoshida, N. Tanigaki, H. Takiguchi, H. Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase, "Two-dimensional array of silver nanoparticles," Thin Solid Films 327-329, 524-527 (1997).
    [CrossRef]
  3. J.C. Hulteen, D.A. Treichel, M.T. Smith, M.L. Duval, T.R. Jensen, and R.P. van Duyne, "Nanosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays," J.Phys.Chem.B 103, 3854-3863 (1999).
    [CrossRef]
  4. D.Y. Petrovykh, F.J. Himpsel, and T. Jung, "Width distribution of nanowires grown by step decoration," Surf.Science 407, 189-199 (1998).
    [CrossRef]
  5. G.L. Che, B.B. Lakshmi, E.R. Fisher, and C.R. Martin, "Carbon nanotubule membranes for electrochemical energy storage and production," Nature 393, 346-349 (1998).
    [CrossRef]
  6. A.P. Li, F. Muller, and U. Gosele, "Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina," Electrochem.Solid-State Lett. 3, 131-134 (2000).
    [CrossRef]
  7. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, and C.A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science 277, 1078-1081 (1997).
    [CrossRef] [PubMed]
  8. L.A. Lyon, M.D. Musick, and M.J. Natan, "Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing," Anal.Chem. 70, 5177-5183 (1998).
    [CrossRef] [PubMed]
  9. S. Schultz, D.R. Smith, J.J. Mock, and D.A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
    [CrossRef] [PubMed]
  10. C. Viets and W. Hill, "Single-fibre surface-enhanced Raman sensors with angled tips," J. Raman Spectrosc. 31, 625-631 (2000).
    [CrossRef]
  11. T.J. Silva and S. Schultz, "A scanning near-field optical microscope for the imaging of magnetic domains in reflection," Rev. Sci. Inst. 67, 715-725 (1996).
    [CrossRef]
  12. R.M. Stöckle, Y.D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000).
    [CrossRef]
  13. J.P. Kottmann and O.J.F, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. in press (2001).
  14. M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  15. J.-C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
    [CrossRef]
  16. J.R. Krenn et al., "Squeezing the optical near-field by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
    [CrossRef]
  17. J. Tominaga, C. Mihalcea, D. Büchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, "Local plasmon photonic transistor," Appl.Phys.Lett. 78, 2417-2419 (2001).
    [CrossRef]
  18. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
    [CrossRef]
  19. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, "Single molecule detection using surface-enhanced Raman scattering," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  20. S. Nie and S.R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Ramsn scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  21. H. Xu, E.J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
    [CrossRef]
  22. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. in press, (2001).
  23. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of Silver nanoparticles," Optics Express 6, 213-219 (2000), http://www.opticsexpress.org/oearchive/source/21116.htm
    [CrossRef] [PubMed]
  24. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a non-regular cross-section," Phys. Rev. B submitted (2001).
  25. F.J. García-Vidal and J.B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
    [CrossRef] [PubMed]
  26. P.K. Aravind, A. Nitzan, and H. Metiu, "The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres," Surf. Sci. 110, 189-204 (1981).
    [CrossRef]
  27. A.I. Vanin, "Surface-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles," J. Appl. Spectrosc. 62 (1995).
  28. N. Félidj, J. Aubard, and G. Lévi, "Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids," J. Chem. Phys. 111, 1195-1208 (1999).
    [CrossRef]
  29. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 1-7 (2000).
    [CrossRef]
  30. C.F. Bohren and D.R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983).
  31. U. Kreibig and M. Vollmer, Optical Poperties of Metal Clusters, Springer Series in Material Science Vol. 25 (Springer Verlag, Berlin, 1995).
  32. U. Kreibig and C. v. Fragstein, "The Limitation of Electron Mean Free Path in Small Silver Particles," Z. Physik 224, 307-323 (1969).
    [CrossRef]
  33. L. Genzel, T.P. Martin, and U. Kreibig, "Dielectric Function and Plasma Resonances of Small Metal Particles," Z. Physik B 21, 339-346 (1975).
    [CrossRef]
  34. K.-P. Charlé, L. Köig, S. Nepijko, I. Rabin, and W. Schulze, "The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm < D < 30 nm," Cryst. Res. Technol. 33, 1085-1096 (1998).
    [CrossRef]
  35. J.-Y. Bigot, V. Halté, J.C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000).
    [CrossRef]
  36. P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  37. J.P. Kottmann and O.J.F. Martin, "Accurate solution of the volume integral equation for high permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
    [CrossRef]
  38. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Field polarization and polarization charge distributions in plasmon resonant particles," New J. Phys. 2, 27.1-27.9 (2000).
    [CrossRef]
  39. M.I. Stockmann, V.M. Shalaev, M. Moskovits, R. Botet, and T.F. George, "Enhanced Raman scattering by fractal clusters: Scale-invariant theory," Phys. Rev. B 46, 2821-2830 (1992).
    [CrossRef]

Other (39)

K. Bromann, C. Félix, H. Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern, "Controlled Deposition of Size-Selected Silver Nanoclusters," Science 274, 956-958 (1996).
[CrossRef] [PubMed]

K. Abe, T. Hanada, Y. Yoshida, N. Tanigaki, H. Takiguchi, H. Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase, "Two-dimensional array of silver nanoparticles," Thin Solid Films 327-329, 524-527 (1997).
[CrossRef]

J.C. Hulteen, D.A. Treichel, M.T. Smith, M.L. Duval, T.R. Jensen, and R.P. van Duyne, "Nanosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays," J.Phys.Chem.B 103, 3854-3863 (1999).
[CrossRef]

D.Y. Petrovykh, F.J. Himpsel, and T. Jung, "Width distribution of nanowires grown by step decoration," Surf.Science 407, 189-199 (1998).
[CrossRef]

G.L. Che, B.B. Lakshmi, E.R. Fisher, and C.R. Martin, "Carbon nanotubule membranes for electrochemical energy storage and production," Nature 393, 346-349 (1998).
[CrossRef]

A.P. Li, F. Muller, and U. Gosele, "Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina," Electrochem.Solid-State Lett. 3, 131-134 (2000).
[CrossRef]

R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, and C.A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science 277, 1078-1081 (1997).
[CrossRef] [PubMed]

L.A. Lyon, M.D. Musick, and M.J. Natan, "Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing," Anal.Chem. 70, 5177-5183 (1998).
[CrossRef] [PubMed]

S. Schultz, D.R. Smith, J.J. Mock, and D.A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proc. Natl. Acad. Sci. USA 97, 996-1001 (2000).
[CrossRef] [PubMed]

C. Viets and W. Hill, "Single-fibre surface-enhanced Raman sensors with angled tips," J. Raman Spectrosc. 31, 625-631 (2000).
[CrossRef]

T.J. Silva and S. Schultz, "A scanning near-field optical microscope for the imaging of magnetic domains in reflection," Rev. Sci. Inst. 67, 715-725 (1996).
[CrossRef]

R.M. Stöckle, Y.D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

J.P. Kottmann and O.J.F, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. in press (2001).

M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

J.R. Krenn et al., "Squeezing the optical near-field by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).
[CrossRef]

J. Tominaga, C. Mihalcea, D. Büchel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, "Local plasmon photonic transistor," Appl.Phys.Lett. 78, 2417-2419 (2001).
[CrossRef]

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, "Single molecule detection using surface-enhanced Raman scattering," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

S. Nie and S.R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Ramsn scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

H. Xu, E.J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. in press, (2001).

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of Silver nanoparticles," Optics Express 6, 213-219 (2000), http://www.opticsexpress.org/oearchive/source/21116.htm
[CrossRef] [PubMed]

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a non-regular cross-section," Phys. Rev. B submitted (2001).

F.J. García-Vidal and J.B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996).
[CrossRef] [PubMed]

P.K. Aravind, A. Nitzan, and H. Metiu, "The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres," Surf. Sci. 110, 189-204 (1981).
[CrossRef]

A.I. Vanin, "Surface-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles," J. Appl. Spectrosc. 62 (1995).

N. Félidj, J. Aubard, and G. Lévi, "Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids," J. Chem. Phys. 111, 1195-1208 (1999).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 1-7 (2000).
[CrossRef]

C.F. Bohren and D.R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983).

U. Kreibig and M. Vollmer, Optical Poperties of Metal Clusters, Springer Series in Material Science Vol. 25 (Springer Verlag, Berlin, 1995).

U. Kreibig and C. v. Fragstein, "The Limitation of Electron Mean Free Path in Small Silver Particles," Z. Physik 224, 307-323 (1969).
[CrossRef]

L. Genzel, T.P. Martin, and U. Kreibig, "Dielectric Function and Plasma Resonances of Small Metal Particles," Z. Physik B 21, 339-346 (1975).
[CrossRef]

K.-P. Charlé, L. Köig, S. Nepijko, I. Rabin, and W. Schulze, "The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm < D < 30 nm," Cryst. Res. Technol. 33, 1085-1096 (1998).
[CrossRef]

J.-Y. Bigot, V. Halté, J.C. Merle, and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251, 181-203 (2000).
[CrossRef]

P.B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

J.P. Kottmann and O.J.F. Martin, "Accurate solution of the volume integral equation for high permittivity scatterers," IEEE Trans. Antennas Propag. 48, 1719-1726 (2000).
[CrossRef]

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Field polarization and polarization charge distributions in plasmon resonant particles," New J. Phys. 2, 27.1-27.9 (2000).
[CrossRef]

M.I. Stockmann, V.M. Shalaev, M. Moskovits, R. Botet, and T.F. George, "Enhanced Raman scattering by fractal clusters: Scale-invariant theory," Phys. Rev. B 46, 2821-2830 (1992).
[CrossRef]

Supplementary Material (10)

» Media 1: MOV (271 KB)     
» Media 2: MOV (313 KB)     
» Media 3: MOV (372 KB)     
» Media 4: MOV (276 KB)     
» Media 5: MOV (353 KB)     
» Media 6: MOV (351 KB)     
» Media 7: MOV (306 KB)     
» Media 8: MOV (619 KB)     
» Media 9: MOV (499 KB)     
» Media 10: MOV (377 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

SCS of two 50 nm diameter cylinders with a 5 nm separation. Two different illumination directions, in dicated by the arrows in the inset, are considered. The SCS of a single cylinder is given for comparison (black).

Fig. 2.
Fig. 2.

Field amplitude distribution as a function of the illumination wavelength (indicated on the top of each frame) for (a) an individual cylinder (277KB) and (b), (c) two interacting cylinders with a 5 nm separation (321 and 381KB). The cylinders have 50 nm diameter. For the interacting cylinders two different illumination directions, indicated by the arrow, are considered. Front pictures: Corresponding main resonances (a) λ=344 nm,(b) λ=380 nm and (c) λ=374nm

Fig. 3.
Fig. 3.

Polarization charge distribution at the main resonance for (a) a single cylinder and (b),(c) two interacting cylinders with a separation d=5nm. Illumination direction as indicated. The cylinders have a 50 nm diameter. A different colorscale is used for each part: the charge density is much higher for the coupled cylinders (b) and (c) than for the single cylinder (a).

Fig. 4.
Fig. 4.

Amplitude distribution for two interacting 50nm cylinders for different separation distances d (negative distances correspond to intersecting cylinders) (283KB). The corresponding main resonance wavelength is shown.

Fig. 5.
Fig. 5.

SCS for two 50 nm cylinders illuminated normally to their main axis. Five separation distances are investigated: d=2, 5, 10, 20 and 50 nm.

Fig. 6.
Fig. 6.

Spectral variation of the field amplitude distribution for two interacting cylinders illuminated from the top, for different separation distances d: (a) d=2nm (361KB),(b) d=10 nm (359KB),and (c) d=20 nm (313KB). Front pictures: Corresponding main resonances (a) λ=404 (nm),(b) λ=368 (nm),and (c) λ=358 (nm).

Fig. 7.
Fig. 7.

SCS for two intersecting 50 nm cylinders illuminated from the top. Three intersection distances are investigated: d=-2,-5 and -20nm.

Fig. 8.
Fig. 8.

Polarization charge distribution for two intersecting 50 nm cylinders (d=-2 nm) for the resonances at (a) λ=338 nm,(b) λ=430 nm,(c) λ=540nm.

Fig. 9.
Fig. 9.

Field amplitude distribution as a function of the illumination wavelength (indicated on the top of each frame) for two intersecting cylinders illuminated from the top. Different intersection distances are investigated: (a) d=-2 nm (634KB),(b) d=-5 nm (511KB),and (c) d=-20nm (386KB). Front pictures: Corresponding main resonances (a) λ=430 (nm),(b) λ=404 (nm),(c) λ=384 (nm).

Metrics