Abstract

We investigate the plasmon resonances of interacting silver nanowires with a 50 nm diameter. Both non–touching and intersecting configurations are investigated. While individual cylinders exhibit a single plasmon resonance, we observe much more complex spectra of resonances for interacting structures. The number and magnitude of the different resonances depend on the illumination direction and on the distance between the particles. For very small separations, we observe a dramatic field enhancement between the particles, where the electric field amplitude reaches a hundredfold of the illumination. A similar enhancement is observed in the grooves created in slightly intersecting particles. The topology of these different resonances is related to the induced polarization charges. The implication of these results to surface enhanced Raman scattering (SERS) are discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Retardation-induced plasmon resonances in coupled nanoparticles

Jörg P. Kottmann and Olivier J. F. Martin
Opt. Lett. 26(14) 1096-1098 (2001)

Spectral response of plasmon resonant nanoparticles with a non-regular shape

Jörg P. Kottmann, Olivier J.F. Martin, David R. Smith, and Sheldon Schultz
Opt. Express 6(11) 213-219 (2000)

References

  • View by:
  • |
  • |
  • |

  1. K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
    [Crossref] [PubMed]
  2. K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
    [Crossref]
  3. J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
    [Crossref]
  4. D. Y. Petrovykh, F. J. Himpsel, and T. Jung, “Width distribution of nanowires grown by step decoration,” Surf. Science 407, 189–199 (1998).
    [Crossref]
  5. G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin,“Car bon nanotubule membranes for electrochemical energy storage and production,” Nature 393, 346–349 (1998).
    [Crossref]
  6. A. P. Li, F. Müller, and U. Gösele,“Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3, 131–134 (2000).
    [Crossref]
  7. R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997).
    [Crossref] [PubMed]
  8. L. A. Lyon, M . D. Musick, and M. J. Natan, “Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
    [Crossref] [PubMed]
  9. S. Schultz, D. R. Smith, J . J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
    [Crossref] [PubMed]
  10. C. Viets and W. Hill,“Single-fibre surface-enhanced Raman sensors with angled tips,” J. Raman Spectrosc. 31, 625–631 (2000).
    [Crossref]
  11. T. J. Silva and S. Schultz,“A scanning near-field optical microscope for the imaging of magnetic domains in reflection,” Rev. Sci. Inst. 67, 715–725 (1996).
    [Crossref]
  12. R. M. Stöckle, Y . D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
    [Crossref]
  13. J. P. Kottmann and O. J. F,“Retar dation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. in press (2001).
  14. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [Crossref]
  15. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
    [Crossref]
  16. J. R. Krennet al.,“Squeezing the optical near–field by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
    [Crossref]
  17. J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
    [Crossref]
  18. M. Moskovits,“Sur face-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [Crossref]
  19. K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [Crossref]
  20. S. Nie and S. R. Emory,“Pr obing single molecules and single nanoparticles by surface-enhanced Ramsn scattering,” Science 275, 1102–1106 (1997).
    [Crossref] [PubMed]
  21. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
    [Crossref]
  22. J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett. in press, (2001).
  23. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of Silver nanoparticles,” Optics Express 6, 213–219 (2000).
    [Crossref] [PubMed]
  24. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a non–regular cross–section,” Phys. Rev. B submitted (2001).
  25. F. J. García-Vidal and J. B. Pendry, “Col lective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
    [Crossref] [PubMed]
  26. P. K. Aravind, A . Nitzan, and H. Metiu,“The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres,” Surf. Sci. 110, 189–204 (1981).
    [Crossref]
  27. A. I. Vanin,“Sur face-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles,” J. Appl. Spectrosc.62 (1995).
  28. N. Félidj, J . Aubard, and G. Lévi,“Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
    [Crossref]
  29. H. Xu, J . Aizpurua, M. Käll, and P. Apell,“Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1–7 (2000).
    [Crossref]
  30. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York,1983).
  31. U. Kreibig and M. Vollmer, Optical Poperties of Metal Clusters, Springer Series in Material ScienceVol. 25 (Springer Verlag,Ber lin,1995).
  32. U. Kreibig and C. v. Fragstein,“The Limitation of Electron Mean Free Path in Small Silver Particles,” Z. Physik 224, 307–323 (1969).
    [Crossref]
  33. L. Genzel, T. P. Martin, and U. Kreibig,“Dielectric Function and Plasma Resonances of Small Metal Particles,” Z. Physik B 21, 339–346 (1975).
    [Crossref]
  34. K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm<D<30 nm,” Cryst. Res. Technol. 33, 1085–1096 (1998).
    [Crossref]
  35. J.-Y. Bigot, V . Halté, J. C. Merle, and A. Daunois,“Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
    [Crossref]
  36. P. B. Johnson and R. W. Christy,“Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  37. J. P. Kottmann and O. J. F. Martin,“Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
    [Crossref]
  38. J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000).
    [Crossref]
  39. M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992).
    [Crossref]

2001 (1)

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

2000 (9)

R. M. Stöckle, Y . D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

A. P. Li, F. Müller, and U. Gösele,“Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3, 131–134 (2000).
[Crossref]

S. Schultz, D. R. Smith, J . J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[Crossref] [PubMed]

C. Viets and W. Hill,“Single-fibre surface-enhanced Raman sensors with angled tips,” J. Raman Spectrosc. 31, 625–631 (2000).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of Silver nanoparticles,” Optics Express 6, 213–219 (2000).
[Crossref] [PubMed]

H. Xu, J . Aizpurua, M. Käll, and P. Apell,“Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1–7 (2000).
[Crossref]

J.-Y. Bigot, V . Halté, J. C. Merle, and A. Daunois,“Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

J. P. Kottmann and O. J. F. Martin,“Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000).
[Crossref]

1999 (5)

N. Félidj, J . Aubard, and G. Lévi,“Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[Crossref]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

J. R. Krennet al.,“Squeezing the optical near–field by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

1998 (5)

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

D. Y. Petrovykh, F. J. Himpsel, and T. Jung, “Width distribution of nanowires grown by step decoration,” Surf. Science 407, 189–199 (1998).
[Crossref]

G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin,“Car bon nanotubule membranes for electrochemical energy storage and production,” Nature 393, 346–349 (1998).
[Crossref]

L. A. Lyon, M . D. Musick, and M. J. Natan, “Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[Crossref] [PubMed]

K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm<D<30 nm,” Cryst. Res. Technol. 33, 1085–1096 (1998).
[Crossref]

1997 (4)

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref] [PubMed]

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

S. Nie and S. R. Emory,“Pr obing single molecules and single nanoparticles by surface-enhanced Ramsn scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

1996 (3)

T. J. Silva and S. Schultz,“A scanning near-field optical microscope for the imaging of magnetic domains in reflection,” Rev. Sci. Inst. 67, 715–725 (1996).
[Crossref]

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
[Crossref] [PubMed]

F. J. García-Vidal and J. B. Pendry, “Col lective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref] [PubMed]

1992 (1)

M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992).
[Crossref]

1985 (1)

M. Moskovits,“Sur face-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

1981 (1)

P. K. Aravind, A . Nitzan, and H. Metiu,“The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres,” Surf. Sci. 110, 189–204 (1981).
[Crossref]

1975 (1)

L. Genzel, T. P. Martin, and U. Kreibig,“Dielectric Function and Plasma Resonances of Small Metal Particles,” Z. Physik B 21, 339–346 (1975).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy,“Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1969 (1)

U. Kreibig and C. v. Fragstein,“The Limitation of Electron Mean Free Path in Small Silver Particles,” Z. Physik 224, 307–323 (1969).
[Crossref]

Abe, K.

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Aizpurua, J .

H. Xu, J . Aizpurua, M. Käll, and P. Apell,“Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1–7 (2000).
[Crossref]

Apell, P.

H. Xu, J . Aizpurua, M. Käll, and P. Apell,“Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1–7 (2000).
[Crossref]

Aravind, P. K.

P. K. Aravind, A . Nitzan, and H. Metiu,“The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres,” Surf. Sci. 110, 189–204 (1981).
[Crossref]

Atoda, N .

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

Aubard, J .

N. Félidj, J . Aubard, and G. Lévi,“Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[Crossref]

Aussenegg, F. R.

Bigot, J.-Y.

J.-Y. Bigot, V . Halté, J. C. Merle, and A. Daunois,“Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York,1983).

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Botet, R.

M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992).
[Crossref]

Bromann, K.

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
[Crossref] [PubMed]

Brune, H .

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
[Crossref] [PubMed]

Büchel, D.

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

Buttet, J.

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
[Crossref] [PubMed]

Charlé, K.-P.

K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm<D<30 nm,” Cryst. Res. Technol. 33, 1085–1096 (1998).
[Crossref]

Che, G. L.

G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin,“Car bon nanotubule membranes for electrochemical energy storage and production,” Nature 393, 346–349 (1998).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy,“Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Dasari, R. R.

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Daunois, A.

J.-Y. Bigot, V . Halté, J. C. Merle, and A. Daunois,“Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Deckert, V.

R. M. Stöckle, Y . D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

Dereux, A.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

Duval, M . L.

J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Elghanian, R.

R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory,“Pr obing single molecules and single nanoparticles by surface-enhanced Ramsn scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Félidj, N.

N. Félidj, J . Aubard, and G. Lévi,“Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[Crossref]

Félix, C.

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
[Crossref] [PubMed]

Fisher, E. R.

G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin,“Car bon nanotubule membranes for electrochemical energy storage and production,” Nature 393, 346–349 (1998).
[Crossref]

Fragstein, C. v.

U. Kreibig and C. v. Fragstein,“The Limitation of Electron Mean Free Path in Small Silver Particles,” Z. Physik 224, 307–323 (1969).
[Crossref]

Fuji, H.

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

Fukuda, H .

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

García-Vidal, F. J.

F. J. García-Vidal and J. B. Pendry, “Col lective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref] [PubMed]

Genzel, L.

L. Genzel, T. P. Martin, and U. Kreibig,“Dielectric Function and Plasma Resonances of Small Metal Particles,” Z. Physik B 21, 339–346 (1975).
[Crossref]

George, T. F.

M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992).
[Crossref]

Girard, C.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

Gösele, U.

A. P. Li, F. Müller, and U. Gösele,“Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3, 131–134 (2000).
[Crossref]

Goudonnet, J.-P.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

Halté, V .

J.-Y. Bigot, V . Halté, J. C. Merle, and A. Daunois,“Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Hanada, T.

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Harbich, W.

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
[Crossref] [PubMed]

Hill, W.

C. Viets and W. Hill,“Single-fibre surface-enhanced Raman sensors with angled tips,” J. Raman Spectrosc. 31, 625–631 (2000).
[Crossref]

Himpsel, F. J.

D. Y. Petrovykh, F. J. Himpsel, and T. Jung, “Width distribution of nanowires grown by step decoration,” Surf. Science 407, 189–199 (1998).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York,1983).

Hulteen, J. C.

J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Itzkan, I.

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Jensen, T . R.

J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy,“Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jung, T.

D. Y. Petrovykh, F. J. Himpsel, and T. Jung, “Width distribution of nanowires grown by step decoration,” Surf. Science 407, 189–199 (1998).
[Crossref]

Käll, M.

H. Xu, J . Aizpurua, M. Käll, and P. Apell,“Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1–7 (2000).
[Crossref]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Kern, K.

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
[Crossref] [PubMed]

Kikukawa, T.

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

Kneipp, H.

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

König, L.

K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm<D<30 nm,” Cryst. Res. Technol. 33, 1085–1096 (1998).
[Crossref]

Kottmann, J. P.

J. P. Kottmann and O. J. F. Martin,“Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of Silver nanoparticles,” Optics Express 6, 213–219 (2000).
[Crossref] [PubMed]

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett. in press, (2001).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a non–regular cross–section,” Phys. Rev. B submitted (2001).

J. P. Kottmann and O. J. F,“Retar dation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. in press (2001).

Kreibig, U.

L. Genzel, T. P. Martin, and U. Kreibig,“Dielectric Function and Plasma Resonances of Small Metal Particles,” Z. Physik B 21, 339–346 (1975).
[Crossref]

U. Kreibig and C. v. Fragstein,“The Limitation of Electron Mean Free Path in Small Silver Particles,” Z. Physik 224, 307–323 (1969).
[Crossref]

U. Kreibig and M. Vollmer, Optical Poperties of Metal Clusters, Springer Series in Material ScienceVol. 25 (Springer Verlag,Ber lin,1995).

Krenn, J. R.

J. R. Krennet al.,“Squeezing the optical near–field by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[Crossref]

Lakshmi, B. B.

G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin,“Car bon nanotubule membranes for electrochemical energy storage and production,” Nature 393, 346–349 (1998).
[Crossref]

Leitner, A.

Letsinger, R . L.

R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref] [PubMed]

Lévi, G.

N. Félidj, J . Aubard, and G. Lévi,“Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[Crossref]

Li, A. P.

A. P. Li, F. Müller, and U. Gösele,“Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3, 131–134 (2000).
[Crossref]

Lyon, L. A.

L. A. Lyon, M . D. Musick, and M. J. Natan, “Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[Crossref] [PubMed]

Martin, C. R.

G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin,“Car bon nanotubule membranes for electrochemical energy storage and production,” Nature 393, 346–349 (1998).
[Crossref]

Martin, O. J. F.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of Silver nanoparticles,” Optics Express 6, 213–219 (2000).
[Crossref] [PubMed]

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000).
[Crossref]

J. P. Kottmann and O. J. F. Martin,“Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett. in press, (2001).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a non–regular cross–section,” Phys. Rev. B submitted (2001).

Martin, T. P.

L. Genzel, T. P. Martin, and U. Kreibig,“Dielectric Function and Plasma Resonances of Small Metal Particles,” Z. Physik B 21, 339–346 (1975).
[Crossref]

Merle, J. C.

J.-Y. Bigot, V . Halté, J. C. Merle, and A. Daunois,“Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Metiu, H.

P. K. Aravind, A . Nitzan, and H. Metiu,“The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres,” Surf. Sci. 110, 189–204 (1981).
[Crossref]

Mihalcea, C.

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

Mirkin, C. A.

R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref] [PubMed]

Mock, J . J.

S. Schultz, D. R. Smith, J . J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[Crossref] [PubMed]

Monot, R.

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
[Crossref] [PubMed]

Moskovits, M .

M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992).
[Crossref]

Moskovits, M.

M. Moskovits,“Sur face-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Mucic, R . C.

R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref] [PubMed]

Müller, F.

A. P. Li, F. Müller, and U. Gösele,“Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3, 131–134 (2000).
[Crossref]

Musick, M . D.

L. A. Lyon, M . D. Musick, and M. J. Natan, “Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[Crossref] [PubMed]

Nagasawa, H .

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Nakamoto, M.

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Nakano, T.

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

Natan, M. J.

L. A. Lyon, M . D. Musick, and M. J. Natan, “Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[Crossref] [PubMed]

Nepijko, S.

K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm<D<30 nm,” Cryst. Res. Technol. 33, 1085–1096 (1998).
[Crossref]

Nie, S.

S. Nie and S. R. Emory,“Pr obing single molecules and single nanoparticles by surface-enhanced Ramsn scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Nitzan, A .

P. K. Aravind, A . Nitzan, and H. Metiu,“The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres,” Surf. Sci. 110, 189–204 (1981).
[Crossref]

O. J. F,

J. P. Kottmann and O. J. F,“Retar dation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. in press (2001).

Pendry, J. B.

F. J. García-Vidal and J. B. Pendry, “Col lective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Petrovykh, D. Y.

D. Y. Petrovykh, F. J. Himpsel, and T. Jung, “Width distribution of nanowires grown by step decoration,” Surf. Science 407, 189–199 (1998).
[Crossref]

Quinten, M.

Rabin, I.

K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm<D<30 nm,” Cryst. Res. Technol. 33, 1085–1096 (1998).
[Crossref]

Schultz, D. A.

S. Schultz, D. R. Smith, J . J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[Crossref] [PubMed]

Schultz, S.

S. Schultz, D. R. Smith, J . J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[Crossref] [PubMed]

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of Silver nanoparticles,” Optics Express 6, 213–219 (2000).
[Crossref] [PubMed]

T. J. Silva and S. Schultz,“A scanning near-field optical microscope for the imaging of magnetic domains in reflection,” Rev. Sci. Inst. 67, 715–725 (1996).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett. in press, (2001).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a non–regular cross–section,” Phys. Rev. B submitted (2001).

Schulze, W.

K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm<D<30 nm,” Cryst. Res. Technol. 33, 1085–1096 (1998).
[Crossref]

Shalaev, V. M.

M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992).
[Crossref]

Silva, T. J.

T. J. Silva and S. Schultz,“A scanning near-field optical microscope for the imaging of magnetic domains in reflection,” Rev. Sci. Inst. 67, 715–725 (1996).
[Crossref]

Smith, D . R.

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000).
[Crossref]

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett. in press, (2001).

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of Silver nanoparticles,” Optics Express 6, 213–219 (2000).
[Crossref] [PubMed]

S. Schultz, D. R. Smith, J . J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[Crossref] [PubMed]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a non–regular cross–section,” Phys. Rev. B submitted (2001).

Smith, M. T.

J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Stöckle, R. M.

R. M. Stöckle, Y . D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

Stockmann, M. I.

M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992).
[Crossref]

Storhoff, J. J.

R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref] [PubMed]

Suh, Y . D.

R. M. Stöckle, Y . D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

Takiguchi, H .

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Tanigaki, N .

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Tominaga, J.

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

Treichel, D . A.

J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

van Duyne, R. P.

J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

Vanin, A. I.

A. I. Vanin,“Sur face-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles,” J. Appl. Spectrosc.62 (1995).

Viets, C.

C. Viets and W. Hill,“Single-fibre surface-enhanced Raman sensors with angled tips,” J. Raman Spectrosc. 31, 625–631 (2000).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Poperties of Metal Clusters, Springer Series in Material ScienceVol. 25 (Springer Verlag,Ber lin,1995).

Wang, Y .

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Weeber, J.-C.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

Xu, H.

H. Xu, J . Aizpurua, M. Käll, and P. Apell,“Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1–7 (2000).
[Crossref]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Yamaguchi, T.

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Yase, K.

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Yoshida, Y .

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Zenobi, R.

R. M. Stöckle, Y . D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

Anal. Chem. (1)

L. A. Lyon, M . D. Musick, and M. J. Natan, “Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Tominaga, C. Mihalcea, D. Büchel, H . Fukuda, T. Nakano, N . Atoda, H. Fuji, and T. Kikukawa, “Local plasmon photonic transistor,” Appl. Phys. Lett. 78, 2417–2419 (2001).
[Crossref]

Chem. Phys. (1)

J.-Y. Bigot, V . Halté, J. C. Merle, and A. Daunois,“Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203 (2000).
[Crossref]

Chem. Phys. Lett. (1)

R. M. Stöckle, Y . D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[Crossref]

Cryst. Res. Technol. (1)

K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The Surface Plasmon Resonance in Free and Embedded Ag-Clusters in the Size Range 1,5 nm<D<30 nm,” Cryst. Res. Technol. 33, 1085–1096 (1998).
[Crossref]

Electrochem. Solid-State Lett. (1)

A. P. Li, F. Müller, and U. Gösele,“Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina,” Electrochem. Solid-State Lett. 3, 131–134 (2000).
[Crossref]

IEEE Trans. Antennas Propag. (1)

J. P. Kottmann and O. J. F. Martin,“Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 1719–1726 (2000).
[Crossref]

J. Chem. Phys. (1)

N. Félidj, J . Aubard, and G. Lévi,“Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[Crossref]

J. Phys. Chem. B (1)

J. C. Hulteen, D . A. Treichel, M. T. Smith, M . L. Duval, T . R. Jensen, and R. P. van Duyne,“N anosphere Lithography: Size-Tunable Silver Nanoparticles and Surface Cluster Arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
[Crossref]

J. Raman Spectrosc. (1)

C. Viets and W. Hill,“Single-fibre surface-enhanced Raman sensors with angled tips,” J. Raman Spectrosc. 31, 625–631 (2000).
[Crossref]

Nature (1)

G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin,“Car bon nanotubule membranes for electrochemical energy storage and production,” Nature 393, 346–349 (1998).
[Crossref]

New J. Phys. (1)

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant particles,” New J. Phys. 2, 27.1–27.9 (2000).
[Crossref]

Opt. Lett. (1)

Optics Express (1)

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of Silver nanoparticles,” Optics Express 6, 213–219 (2000).
[Crossref] [PubMed]

Phys. Rev. B (3)

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

M. I. Stockmann, V. M. Shalaev, M . Moskovits, R. Botet, and T. F. George,“Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B 46, 2821–2830 (1992).
[Crossref]

P. B. Johnson and R. W. Christy,“Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. E (1)

H. Xu, J . Aizpurua, M. Käll, and P. Apell,“Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 1–7 (2000).
[Crossref]

Phys. Rev. Lett. (4)

F. J. García-Vidal and J. B. Pendry, “Col lective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996).
[Crossref] [PubMed]

K. Kneipp, Y . Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld,“Si ngle molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson,“Sp ectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

J. R. Krennet al.,“Squeezing the optical near–field by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

S. Schultz, D. R. Smith, J . J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits,“Sur face-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Rev. Sci. Inst. (1)

T. J. Silva and S. Schultz,“A scanning near-field optical microscope for the imaging of magnetic domains in reflection,” Rev. Sci. Inst. 67, 715–725 (1996).
[Crossref]

Science (3)

R. Elghanian, J. J. Storhoff, R . C. Mucic, R . L. Letsinger, and C. A. Mirkin, “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science 277, 1078–1081 (1997).
[Crossref] [PubMed]

K. Bromann, C. Félix, H . Brune, W. Harbich, R. Monot, J. Buttet, and K. Kern,“Con trolled Deposition of Size-Selected Silver Nanoclusters,” Science 274, 956–958 (1996).
[Crossref] [PubMed]

S. Nie and S. R. Emory,“Pr obing single molecules and single nanoparticles by surface-enhanced Ramsn scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Surf. Sci. (1)

P. K. Aravind, A . Nitzan, and H. Metiu,“The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres,” Surf. Sci. 110, 189–204 (1981).
[Crossref]

Surf. Science (1)

D. Y. Petrovykh, F. J. Himpsel, and T. Jung, “Width distribution of nanowires grown by step decoration,” Surf. Science 407, 189–199 (1998).
[Crossref]

Thin Solid Films (1)

K. Abe, T. Hanada, Y . Yoshida, N . Tanigaki, H . Takiguchi, H . Nagasawa, M. Nakamoto, T. Yamaguchi, and K. Yase,“Two-dimensional array of silver nanoparticles,” Thin Solid Films 327– 329, 524–527 (1997).
[Crossref]

Z. Physik (1)

U. Kreibig and C. v. Fragstein,“The Limitation of Electron Mean Free Path in Small Silver Particles,” Z. Physik 224, 307–323 (1969).
[Crossref]

Z. Physik B (1)

L. Genzel, T. P. Martin, and U. Kreibig,“Dielectric Function and Plasma Resonances of Small Metal Particles,” Z. Physik B 21, 339–346 (1975).
[Crossref]

Other (6)

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York,1983).

U. Kreibig and M. Vollmer, Optical Poperties of Metal Clusters, Springer Series in Material ScienceVol. 25 (Springer Verlag,Ber lin,1995).

A. I. Vanin,“Sur face-amplified Raman scattering of light by molecules adsorbed on groups of spherical particles,” J. Appl. Spectrosc.62 (1995).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a non–regular cross–section,” Phys. Rev. B submitted (2001).

J. P. Kottmann, O. J. F. Martin, D . R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett. in press, (2001).

J. P. Kottmann and O. J. F,“Retar dation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. in press (2001).

Supplementary Material (10)

» Media 1: MOV (271 KB)     
» Media 2: MOV (313 KB)     
» Media 3: MOV (372 KB)     
» Media 4: MOV (276 KB)     
» Media 5: MOV (353 KB)     
» Media 6: MOV (351 KB)     
» Media 7: MOV (306 KB)     
» Media 8: MOV (619 KB)     
» Media 9: MOV (499 KB)     
» Media 10: MOV (377 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

SCS of two 50 nm diameter cylinders with a 5 nm separation. Two different illumination directions, in dicated by the arrows in the inset, are considered. The SCS of a single cylinder is given for comparison (black).

Fig. 2.
Fig. 2.

Field amplitude distribution as a function of the illumination wavelength (indicated on the top of each frame) for (a) an individual cylinder (277KB) and (b), (c) two interacting cylinders with a 5 nm separation (321 and 381KB). The cylinders have 50 nm diameter. For the interacting cylinders two different illumination directions, indicated by the arrow, are considered. Front pictures: Corresponding main resonances (a) λ=344 nm,(b) λ=380 nm and (c) λ=374nm

Fig. 3.
Fig. 3.

Polarization charge distribution at the main resonance for (a) a single cylinder and (b),(c) two interacting cylinders with a separation d=5nm. Illumination direction as indicated. The cylinders have a 50 nm diameter. A different colorscale is used for each part: the charge density is much higher for the coupled cylinders (b) and (c) than for the single cylinder (a).

Fig. 4.
Fig. 4.

Amplitude distribution for two interacting 50nm cylinders for different separation distances d (negative distances correspond to intersecting cylinders) (283KB). The corresponding main resonance wavelength is shown.

Fig. 5.
Fig. 5.

SCS for two 50 nm cylinders illuminated normally to their main axis. Five separation distances are investigated: d=2, 5, 10, 20 and 50 nm.

Fig. 6.
Fig. 6.

Spectral variation of the field amplitude distribution for two interacting cylinders illuminated from the top, for different separation distances d: (a) d=2nm (361KB),(b) d=10 nm (359KB),and (c) d=20 nm (313KB). Front pictures: Corresponding main resonances (a) λ=404 (nm),(b) λ=368 (nm),and (c) λ=358 (nm).

Fig. 7.
Fig. 7.

SCS for two intersecting 50 nm cylinders illuminated from the top. Three intersection distances are investigated: d=-2,-5 and -20nm.

Fig. 8.
Fig. 8.

Polarization charge distribution for two intersecting 50 nm cylinders (d=-2 nm) for the resonances at (a) λ=338 nm,(b) λ=430 nm,(c) λ=540nm.

Fig. 9.
Fig. 9.

Field amplitude distribution as a function of the illumination wavelength (indicated on the top of each frame) for two intersecting cylinders illuminated from the top. Different intersection distances are investigated: (a) d=-2 nm (634KB),(b) d=-5 nm (511KB),and (c) d=-20nm (386KB). Front pictures: Corresponding main resonances (a) λ=430 (nm),(b) λ=404 (nm),(c) λ=384 (nm).

Metrics