Abstract

We have locked a whispering-gallery resonance of a fused-silica microsphere to a frequency-scanning laser. The resonance frequency is modulated by axial compression of the microsphere, and phase-sensitive detection of the fiber-coupled optical throughput is used for locking. Using a laser wavelength of either 1570 nm or 830 nm, we demonstrate a locked tracking range exceeding 30 GHz for a microsphere of 120 GHz free spectral range. This performance has been enabled by an improved compression tuner design that allows coarse tuning over 1 THz and piezoelectric tuning over 80 GHz. Compression modulation rates of up to 13 kHz have also been achieved with this tuner.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality factor and nonlinear properties of optical whispering-gallery modes," Phys. Lett. A 137, 393-397 (1989).
    [CrossRef]
  2. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998).
    [CrossRef]
  3. D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Q whispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
    [CrossRef]
  4. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
    [CrossRef]
  5. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef�vre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, "Very low threshold green lasing in microspheres by up-conversion of IR photons," J. Opt. B: Quantum Semiclass. Opt. 2, 204-206 (2000).
    [CrossRef]
  6. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, "Fiber-coupled microsphere laser," Opt. Lett. 25, 1430-1432 (2000).
    [CrossRef]
  7. D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, "Lowering of threshold conditions for nonlinear effects in a microsphere," Phys. Rev. A 53, 3565-3572 (1996).
    [CrossRef] [PubMed]
  8. A. T. Rosenberger, "Nonlinear Optical Effects in the Whispering-Gallery Modes of Microspheres," in Operational Characteristics and Crystal Growth of Nonlinear Optical Materials, R. B. Lal and D. O. Frazier, eds., Proc. SPIE 3793, 179-186 (1999).
  9. A. T. Rosenberger and J. P. Rezac, "Evanescent-wave sensor using microsphere whispering-gallery modes," in Laser Resonators III, A. V. Kudryashov and A. H. Paxton, eds., Proc. SPIE 3930, 186-192 (2000).
  10. I. H. Malitson, "Interspecimen Comparison of the Refractive Index of Fused Silica," J. Opt. Soc. Am. 55, 1205-1209 (1965).
    [CrossRef]
  11. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lef�vre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
    [CrossRef]
  12. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lef�vre-Seguin, "Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy," Opt. Lett. 26, 166-168 (2001).
    [CrossRef]
  13. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lef�vre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," http://arXiv.org/abs/quant-ph/0011102.
  14. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997).
    [CrossRef] [PubMed]
  15. M. Cai, O. Painter, and K. J. Vahala, "Observation of Critical Coupling in a Fiber Taper to a Silica-.Microsphere Whispering-Gallery Mode System," Phys. Rev. Lett. 85, 74-77 (2000).
    [CrossRef] [PubMed]

Other

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality factor and nonlinear properties of optical whispering-gallery modes," Phys. Lett. A 137, 393-397 (1989).
[CrossRef]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998).
[CrossRef]

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Q whispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
[CrossRef]

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef�vre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, "Very low threshold green lasing in microspheres by up-conversion of IR photons," J. Opt. B: Quantum Semiclass. Opt. 2, 204-206 (2000).
[CrossRef]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, "Fiber-coupled microsphere laser," Opt. Lett. 25, 1430-1432 (2000).
[CrossRef]

D. Braunstein, A. M. Khazanov, G. A. Koganov, and R. Shuker, "Lowering of threshold conditions for nonlinear effects in a microsphere," Phys. Rev. A 53, 3565-3572 (1996).
[CrossRef] [PubMed]

A. T. Rosenberger, "Nonlinear Optical Effects in the Whispering-Gallery Modes of Microspheres," in Operational Characteristics and Crystal Growth of Nonlinear Optical Materials, R. B. Lal and D. O. Frazier, eds., Proc. SPIE 3793, 179-186 (1999).

A. T. Rosenberger and J. P. Rezac, "Evanescent-wave sensor using microsphere whispering-gallery modes," in Laser Resonators III, A. V. Kudryashov and A. H. Paxton, eds., Proc. SPIE 3930, 186-192 (2000).

I. H. Malitson, "Interspecimen Comparison of the Refractive Index of Fused Silica," J. Opt. Soc. Am. 55, 1205-1209 (1965).
[CrossRef]

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lef�vre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Commun. 145, 86-90 (1998).
[CrossRef]

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lef�vre-Seguin, "Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy," Opt. Lett. 26, 166-168 (2001).
[CrossRef]

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lef�vre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," http://arXiv.org/abs/quant-ph/0011102.

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, "Observation of Critical Coupling in a Fiber Taper to a Silica-.Microsphere Whispering-Gallery Mode System," Phys. Rev. Lett. 85, 74-77 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Compression tuner. (a) Main body is 44×38×6-mm aluminum. (b) Stainless steel brace minimizes flexing of main body. (c) Piezoelectric actuator. (d) Manual tuning screw. (e) Hardened steel compression pad. (f) Stainless steel hypodermic tubing, inserted into hole in lower steel pad.

Fig. 2.
Fig. 2.

Unlocked and locked frequency scans at 1570 nm. (a)–(d) Unlocked: WGM mode spectrum observed as the laser is scanned over a 19 GHz range; an increasing frequency shift is seen for PZT bias voltages of 68 V, 88 V, 118 V, and 130 V, respectively. The baseline for trace (a) is at the frequency axis, and successive traces have been displaced vertically. (e) Locked: frequency scan where the WGM with the deepest dip in (a)–(d) is locked to the laser. The baseline is the same as for trace (d). No mode hops are observed.

Fig. 3.
Fig. 3.

Another locked frequency scan at 1570 nm. The laser scans 8 GHz and returns. The vertical scale is the same as in Fig. 2. The baseline is at the frequency axis and again the locked transmission is about 80% of its off-resonance value. No mode hops are observed.

Fig. 4.
Fig. 4.

Locked tuner PZT bias as it follows a 19-GHz frequency scan (and return) of the 1570-nm laser. Heavier (black) curve: PZT bias; no mode hops are observed. Lighter (red) curve: bias predicted from observed laser tuning hysteresis, assuming linear tuner PZT response.

Tables (1)

Tables Icon

Table 1. Tuning ranges for a 550-µm diameter microsphere at two wavelengths

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ν qℓm i = δ [ + 1 2 + A q ( + 1 2 2 ) 1 3 Δ i + ( m ) a e a a a ] .
Δν ν = Δ a a a μ [ 1 + b i ( 1 + μ μ ) m ] .

Metrics