Abstract

We study the cladding modes of photonic crystal fibers (PCFs) using a fully vectorial method. This approach enables us to analyze the modes and incorporate material dispersion in a straightforward fashion. We find the field flow lines, intensity distribution and polarization properties of these modes. The effective cladding indices of different PCFs are investigated in detail.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  2. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey optical fibers: an efficient modal model," J. Lightwave Technol. 17, 1093-1102 (1999).
    [CrossRef]
  3. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  4. J. C. Knight, J. Boreng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  6. M. Midrio, M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: an analytical vectorial solution," J. Lightwave Technol. 18, 1031 (2000).
    [CrossRef]
  7. A. A. Maradudin and A. R. McGurn, "Out of plane propagation of electromagnetic waves in two-dimensional periodic dielectric medium," J. Mod. Opt. 41, 275-284 (1994).
    [CrossRef]
  8. J. Broeng, T. Sondergaard, S. E. Barkou, P. M. Barbeito, and A. Bjarklev, "Waveguidance by the photonic bandgap effect in optical fiber," J. Opt. A - Pure Appl. Opt. 1, 477-482 (1999).
    [CrossRef]
  9. E. Silvestre, M. V. Andres, and P. Andres, "Biorthonormal-basis method for the vector description of optical fiber modes," J. Lightwave Technol. 16, 923-928 (1998).
    [CrossRef]
  10. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, "Full-vector analysis of a realistic photonic crystal fiber," Opt. Lett. 24, 276-278 (1999).
    [CrossRef]
  11. G. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995).
  12. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Localized function method for modeling defect modes in 2-d photonic crystals," J. Lightwave Technol. 17, 2078-2081 (1999); T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Modeling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000).
    [CrossRef]

Other (12)

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey optical fibers: an efficient modal model," J. Lightwave Technol. 17, 1093-1102 (1999).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

J. C. Knight, J. Boreng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

M. Midrio, M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: an analytical vectorial solution," J. Lightwave Technol. 18, 1031 (2000).
[CrossRef]

A. A. Maradudin and A. R. McGurn, "Out of plane propagation of electromagnetic waves in two-dimensional periodic dielectric medium," J. Mod. Opt. 41, 275-284 (1994).
[CrossRef]

J. Broeng, T. Sondergaard, S. E. Barkou, P. M. Barbeito, and A. Bjarklev, "Waveguidance by the photonic bandgap effect in optical fiber," J. Opt. A - Pure Appl. Opt. 1, 477-482 (1999).
[CrossRef]

E. Silvestre, M. V. Andres, and P. Andres, "Biorthonormal-basis method for the vector description of optical fiber modes," J. Lightwave Technol. 16, 923-928 (1998).
[CrossRef]

A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, "Full-vector analysis of a realistic photonic crystal fiber," Opt. Lett. 24, 276-278 (1999).
[CrossRef]

G. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995).

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Localized function method for modeling defect modes in 2-d photonic crystals," J. Lightwave Technol. 17, 2078-2081 (1999); T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Modeling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the triangular lattice of air holes in the cladding. The lattice pitch is Λ, and R is the radius of the air holes. Dielectric constants of air and silica are εa =1.0 and εb (λ), respectively.

Fig. 2.
Fig. 2.

Dispersions of the some lower cladding modes. The fundamental mode (FCM) is a two-fold degenerate mode. The next lower mode (HCM) includes six nearly degenerate modes. The material dispersion of the silica core is also shown in the figure.

Fig. 3.
Fig. 3.

Transverse magnetic fields of the two degenerate modes of the fundamental cladding mode.

Fig. 4.
Fig. 4.

Transverse magnetic field intensity of the fundamental cladding mode (x-polarized).

Fig. 5.
Fig. 5.

Dispersion curves calculated using the present vectorial method (solid lines) and the scalar method (dashed lines) for claddings of different air-hole radius R.

Fig. 6.
Fig. 6.

Effective cladding index as a function of λ/Λ and R/Λ. Λ is chosen to be 2.3 µm and the material dispersion of silica is considered in the calculations.

Fig. 7.
Fig. 7.

Calculated parameter V vs. wavelength for claddings of different pitches and air-hole radii. The red dashed line indicates the single-mode cutoff value of V (=2.405). (a) Lattice pitch Λ=2.3 µm. Results from the vectorial (scalar) method are shown by blue (black) solid lines. (b) Lattice pitch Λ=5.0 µm. Only the vectorial results are shown.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

H ( x , y , z ; t ) = [ H t ( x , y ) + H z ( x , y ) z ̂ ] exp ( i β z i ω t )
2 H + k 2 ε H = ( ln ε ) × ( × H ) ,
LH t = ( t 2 + k 2 ε ) H t + t ( ln ε ) × ( t × H t ) = β 2 H t ,
ε ( x , y ) = G ε ̂ ( G ) exp ( i G · x t ) ,
ln ε ( x , y ) = G κ ̂ ( G ) exp ( i G · x t ) ,
H j ( x , y ) = G H ̂ j ( G ) exp ( i G · x t ) , j = x , y .
G L G G H ̂ ( G ) = β 2 H ̂ ( G ) ,
[ L G G ] u , v = [ G 2 δ G , G + k 2 G ε ̂ ( G ) ] δ u , v + [ Q G G ] u , v , ( u , v = x , y )
[ Q G G ] x , x = κ ̂ ( G G ) ( G y G y ) G y ,
[ Q G G ] x , y = κ ̂ ( G G ) ( G y G y ) G x ,
[ Q G G ] y , x = κ ̂ ( G G ) ( G x G x ) G y ,
[ Q G G ] y , y = κ ̂ ( G G ) ( G x G x ) G x .
ε ̂ ( G ) = { ε b + ( ε a ε b ) f , G = 0 ( ε a ε b ) f 2 J 1 ( GR ) GR , G 0
κ ̂ ( G ) = { ln ε b + ( ln ε a ln ε b ) f , G = 0 ( ln ε a ln ε b ) f 2 J 1 ( GR ) GR , G 0 ,

Metrics