Abstract

We show that optically-induced photorefractive space-charge fields can remove 180° ferroelectric domains in rhodium-doped barium titanate. The cross section of the domains must be small (less than 100 microns) for this process to occur.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, in Photorefractive Materials and Their Applications I , edited by P. Günter and J.P. Huignard, Springer-Verlag, Berlin1988.
    [Crossref]
  2. M. DiDomenico and S. H. Wemple, “Oxygen-Octahedra Ferroelectrics. I. Theory of Electro-optical and Nonlinear optical Effects,” J. Appl. Phys. 40, 720–734 (1969).
    [Crossref]
  3. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, 1977), Chap. 13.
  4. A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
    [Crossref] [PubMed]
  5. V.V. Lemeshko and V.V. Obukhovskii, “Domains in photoexcited LiNbO3:Fe,” Sov. Phys. Solid State 30 (6) 933–936 (1988).
  6. V. I. Kovalevich, L. A. Shuvalov, and T. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals” phys. stat. sol.(a) 45, 249–252 (1978).
    [Crossref]
  7. T. R. Volk, A. A. Grekov, N. A. Kosonogov, and V. M. Fridkin, “Influence of illumination on the domain structure and Curie temperature of BaTiO3,” Sov. Phys.-Solid State 14, 2740–2743 (1973).
  8. R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photo-induced space-charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
    [Crossref] [PubMed]
  9. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [Crossref]
  10. V. Grubsky, S. MacCormack, and J. Feinberg, “All-optical three dimensional mapping of 180° domains hidden in a BaTiO3 crystal,” Opt. Lett. 21, 6–8 (1996).
    [Crossref] [PubMed]
  11. R.S. Cudney, V. Garcés-Chávez, and P. Negrete-Regagnon, “Analysis of ferroelectric 180° domain structures in BaTiO3 using second harmonic scattering”, Opt. Lett. 22, 439–441 (1997).
    [Crossref] [PubMed]
  12. D. S. Campbell, “Some Observations on Switched Single Crystal Barium Titanate,” Phil. Mag. 7, 1157–1166 (1962).
    [Crossref]
  13. G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, and J. Martin, “High Resolution X-Ray Diffraction Imaging of Anti-Parallel Ferroelectric Domains in Barium Titanate and Strontium Barium Niobate,” in Photorefractive Materials, Effects and Devices, Estes Park, 1995, pp. 9–12.

1997 (1)

1996 (1)

1994 (2)

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photo-induced space-charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

1988 (1)

V.V. Lemeshko and V.V. Obukhovskii, “Domains in photoexcited LiNbO3:Fe,” Sov. Phys. Solid State 30 (6) 933–936 (1988).

1978 (1)

V. I. Kovalevich, L. A. Shuvalov, and T. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals” phys. stat. sol.(a) 45, 249–252 (1978).
[Crossref]

1973 (1)

T. R. Volk, A. A. Grekov, N. A. Kosonogov, and V. M. Fridkin, “Influence of illumination on the domain structure and Curie temperature of BaTiO3,” Sov. Phys.-Solid State 14, 2740–2743 (1973).

1972 (1)

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[Crossref]

1969 (1)

M. DiDomenico and S. H. Wemple, “Oxygen-Octahedra Ferroelectrics. I. Theory of Electro-optical and Nonlinear optical Effects,” J. Appl. Phys. 40, 720–734 (1969).
[Crossref]

1962 (1)

D. S. Campbell, “Some Observations on Switched Single Crystal Barium Titanate,” Phil. Mag. 7, 1157–1166 (1962).
[Crossref]

Bismuth, G.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[Crossref]

Campbell, D. S.

D. S. Campbell, “Some Observations on Switched Single Crystal Barium Titanate,” Phil. Mag. 7, 1157–1166 (1962).
[Crossref]

Cronin-Golomb, M.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, and J. Martin, “High Resolution X-Ray Diffraction Imaging of Anti-Parallel Ferroelectric Domains in Barium Titanate and Strontium Barium Niobate,” in Photorefractive Materials, Effects and Devices, Estes Park, 1995, pp. 9–12.

Cudney, R. S.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photo-induced space-charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

Cudney, R.S.

DiDomenico, M.

M. DiDomenico and S. H. Wemple, “Oxygen-Octahedra Ferroelectrics. I. Theory of Electro-optical and Nonlinear optical Effects,” J. Appl. Phys. 40, 720–734 (1969).
[Crossref]

Feinberg, J.

Fogarty, G.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, and J. Martin, “High Resolution X-Ray Diffraction Imaging of Anti-Parallel Ferroelectric Domains in Barium Titanate and Strontium Barium Niobate,” in Photorefractive Materials, Effects and Devices, Estes Park, 1995, pp. 9–12.

Fousek, J.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photo-induced space-charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

Fridkin, V. M.

T. R. Volk, A. A. Grekov, N. A. Kosonogov, and V. M. Fridkin, “Influence of illumination on the domain structure and Curie temperature of BaTiO3,” Sov. Phys.-Solid State 14, 2740–2743 (1973).

Garcés-Chávez, V.

Garrett, M. H.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photo-induced space-charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

Glass, A. M.

M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, 1977), Chap. 13.

Grekov, A. A.

T. R. Volk, A. A. Grekov, N. A. Kosonogov, and V. M. Fridkin, “Influence of illumination on the domain structure and Curie temperature of BaTiO3,” Sov. Phys.-Solid State 14, 2740–2743 (1973).

Grubsky, V.

Günter, P.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photo-induced space-charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

P. Günter and J.-P. Huignard, in Photorefractive Materials and Their Applications I , edited by P. Günter and J.P. Huignard, Springer-Verlag, Berlin1988.
[Crossref]

Huignard, J.-P.

P. Günter and J.-P. Huignard, in Photorefractive Materials and Their Applications I , edited by P. Günter and J.P. Huignard, Springer-Verlag, Berlin1988.
[Crossref]

Kewitsch, A.

A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Kosonogov, N. A.

T. R. Volk, A. A. Grekov, N. A. Kosonogov, and V. M. Fridkin, “Influence of illumination on the domain structure and Curie temperature of BaTiO3,” Sov. Phys.-Solid State 14, 2740–2743 (1973).

Kovalevich, V. I.

V. I. Kovalevich, L. A. Shuvalov, and T. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals” phys. stat. sol.(a) 45, 249–252 (1978).
[Crossref]

Laor, U.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, and J. Martin, “High Resolution X-Ray Diffraction Imaging of Anti-Parallel Ferroelectric Domains in Barium Titanate and Strontium Barium Niobate,” in Photorefractive Materials, Effects and Devices, Estes Park, 1995, pp. 9–12.

Lemeshko, V.V.

V.V. Lemeshko and V.V. Obukhovskii, “Domains in photoexcited LiNbO3:Fe,” Sov. Phys. Solid State 30 (6) 933–936 (1988).

Lines, M. E.

M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, 1977), Chap. 13.

MacCormack, S.

Martin, J.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, and J. Martin, “High Resolution X-Ray Diffraction Imaging of Anti-Parallel Ferroelectric Domains in Barium Titanate and Strontium Barium Niobate,” in Photorefractive Materials, Effects and Devices, Estes Park, 1995, pp. 9–12.

Micheron, F.

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[Crossref]

Negrete-Regagnon, P.

Neurgaonkar, R.R.

A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Obukhovskii, V.V.

V.V. Lemeshko and V.V. Obukhovskii, “Domains in photoexcited LiNbO3:Fe,” Sov. Phys. Solid State 30 (6) 933–936 (1988).

Rytz, D.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photo-induced space-charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

Salamo, G.J.

A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Segev, M.

A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Sharp, E. J.

A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Shuvalov, L. A.

V. I. Kovalevich, L. A. Shuvalov, and T. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals” phys. stat. sol.(a) 45, 249–252 (1978).
[Crossref]

Steiner, B.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, and J. Martin, “High Resolution X-Ray Diffraction Imaging of Anti-Parallel Ferroelectric Domains in Barium Titanate and Strontium Barium Niobate,” in Photorefractive Materials, Effects and Devices, Estes Park, 1995, pp. 9–12.

Towe, T.W.

A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Uhrin, R.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, and J. Martin, “High Resolution X-Ray Diffraction Imaging of Anti-Parallel Ferroelectric Domains in Barium Titanate and Strontium Barium Niobate,” in Photorefractive Materials, Effects and Devices, Estes Park, 1995, pp. 9–12.

Volk, T.

V. I. Kovalevich, L. A. Shuvalov, and T. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals” phys. stat. sol.(a) 45, 249–252 (1978).
[Crossref]

Volk, T. R.

T. R. Volk, A. A. Grekov, N. A. Kosonogov, and V. M. Fridkin, “Influence of illumination on the domain structure and Curie temperature of BaTiO3,” Sov. Phys.-Solid State 14, 2740–2743 (1973).

Wemple, S. H.

M. DiDomenico and S. H. Wemple, “Oxygen-Octahedra Ferroelectrics. I. Theory of Electro-optical and Nonlinear optical Effects,” J. Appl. Phys. 40, 720–734 (1969).
[Crossref]

Yariv, A.

A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

Zgonik, M.

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photo-induced space-charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[Crossref]

J. Appl. Phys. (1)

M. DiDomenico and S. H. Wemple, “Oxygen-Octahedra Ferroelectrics. I. Theory of Electro-optical and Nonlinear optical Effects,” J. Appl. Phys. 40, 720–734 (1969).
[Crossref]

Opt. Lett. (2)

Phil. Mag. (1)

D. S. Campbell, “Some Observations on Switched Single Crystal Barium Titanate,” Phil. Mag. 7, 1157–1166 (1962).
[Crossref]

Phys. Rev. Lett. (2)

A. Kewitsch, M. Segev, A. Yariv, G.J. Salamo, T.W. Towe, E. J. Sharp, and R.R. Neurgaonkar, “Ferroelectric Domain Gratings in Strontium Barium Niobate Induced by Photorefractive Space Charge Fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[Crossref] [PubMed]

R. S. Cudney, J. Fousek, M. Zgonik, P. Günter, M. H. Garrett, and D. Rytz, “Enhancement of the amplitude and lifetime of photo-induced space-charge fields in multi-domain ferroelectric crystals,” Phys. Rev. Lett. 72, 3883–3886 (1994).
[Crossref] [PubMed]

phys. stat. sol.(a) (1)

V. I. Kovalevich, L. A. Shuvalov, and T. Volk, “Spontaneous polarization reversal and photorefractive effect in single-domain iron-doped lithium niobate crystals” phys. stat. sol.(a) 45, 249–252 (1978).
[Crossref]

Sov. Phys. Solid State (1)

V.V. Lemeshko and V.V. Obukhovskii, “Domains in photoexcited LiNbO3:Fe,” Sov. Phys. Solid State 30 (6) 933–936 (1988).

Sov. Phys.-Solid State (1)

T. R. Volk, A. A. Grekov, N. A. Kosonogov, and V. M. Fridkin, “Influence of illumination on the domain structure and Curie temperature of BaTiO3,” Sov. Phys.-Solid State 14, 2740–2743 (1973).

Other (3)

P. Günter and J.-P. Huignard, in Photorefractive Materials and Their Applications I , edited by P. Günter and J.P. Huignard, Springer-Verlag, Berlin1988.
[Crossref]

M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, 1977), Chap. 13.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, and J. Martin, “High Resolution X-Ray Diffraction Imaging of Anti-Parallel Ferroelectric Domains in Barium Titanate and Strontium Barium Niobate,” in Photorefractive Materials, Effects and Devices, Estes Park, 1995, pp. 9–12.

Supplementary Material (3)

» Media 1: MOV (2256 KB)     
» Media 2: MOV (2129 KB)     
» Media 3: MOV (1515 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental set-up. a) The reference beam enters through the “c” face. b) The reference beam enters through the “a” face.

Fig. 2.
Fig. 2.

(2.2MB) Movie of the the decay of domain structure. The domains are visualized using the configuration shown in Fig. 1a. λ=515 nm ; intensity per beam ~20 mW/cm2. Exterior angle between beams: 60°.

Fig. 3.
Fig. 3.

(2MB) Tomography of the domain structure after optical poling. The figure on the left shows the position at which the reference beam enters the a-face of the crystal. The figure on the right shows the domain structure of the region sampled by the reference beam.

Fig. 4.
Fig. 4.

(1.4MB) Movie of the decay of the domain structure at the exit face of the crystal.

Metrics