Abstract

We present a customized multilayered dielectric stack employed as a broadband phase modulator with 6.3 THz optical bandwidth. The bandpass modulator provides up to a full-cycle of near-uniform phase modulation across a defined signal spectrum with maximized transmission and minimized pulse phase distortion. The modulator offers a compact, lightweight approach to active wavefront phase control for large optical apertures without the use of mechanical actuators. The modulator also provides for rapid signal switching. We contrast the narrowband transmission of a standard Distributed Bragg Reflector (DBR) with the broadband transmission of our optimized bandpass modulator. We explore techniques for implementing rapid phase modulation while maintaining high average signal transmission levels.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. L. Fork, S. T. Cole, L. J. Gamble, W. M. Diffey, and A. S. Keys, "Optical amplifier for space applications," Opt. Express 5, 292-301 (1999), http://www.opticsexpress.org/oearchive/source/14181.htm.
    [CrossRef] [PubMed]
  2. H. Hemmati, K. Wilson, M. K. Sue, L. J. Harcke, M. Wilhelm, C.-C.Chen, J. Lesh,Y.Feria, D. Rascoe, F. Lansing, and J. W. Layland, "Comparative Study of Optical and Radio-Frequency Communication Systems for a Deep-Space Mission," The Telecommunications and Data Acquisition Progress Report 42-128, Oct-Dec 1996, J. H. Yuen, ed., 1-33 (1996), http://tmo.jpl.nasa.gov/tmo/progress_report/42-128/title.htm.
  3. J. R. P. Angel and N. J. Woolf, "An Imaging Nulling Interferometer to Study Extrasolar Planets," ApJ. 475, 373-379 (1997), http://www.journals.uchicago.edu/ApJ/journal/issues/ApJ/v475n1/34611/34611.html.
    [CrossRef]
  4. C.A. Beichman, N.J. Woolf, and C.A. Lindensmith, eds., TPF: Terrestrial Planet Finder, JPL Publication 99-003 (Jet Propulsion Laboratory, Pasadena, California, 1999), http://tpf.jpl.nasa.gov/library/tpf_book/index.html.
  5. E. E. Montgomery and G. W. Zeiders, Jr., "The case for segmentation of the primary mirror of large aperture space telescopes," in Space Telescopes and Instruments V, Pierre Y. Bely, James B. Breckinridge, eds., Proc. SPIE 3356, 788-798 (1998).
    [CrossRef]
  6. P. Yeh, Optical Waves in Layered Media, (John Wiley and Sons, New York, 1988), Chapter 5.
  7. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, "Ultrashort pulse propagation at the photonic band edge: Large tunable group delay with minimal distortion and loss," Phys. Rev. E 54, R1078-R1081 (1996).
    [CrossRef]
  8. See, for example, M. Born and E. Wolf, Principles of Optics, Second Revised Edition (Pergamon Press, The MacMillan Co., New York, 1964).
  9. E. D. Palik, "Gallium Arsenide (GaAs)" in Handbook of optical constants of solids, Edward D. Palik, ed. (Academic Press, San Diego 1985).
  10. W. J. Tropf, M. E. Thomas, and T. J. Harris, "Properties of Crystals and Glasses," in Handbook of Optics, Vol. II, Second Edition, Michael Bass, Eric W. Van Stryland, David R. Williams, William L. Wolfe, eds., p. 33.61 (McGraw-Hill, Inc., New York, 1995).
  11. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect," Phys. Rev. Lett. 53, 2173-2176 (1984).
    [CrossRef]
  12. T. R. Nelson, Jr., J. P. Loehr, Q. Xie, J. E. Ehret, J. E. Van Nostrand, L. Gamble, D. K. Jones, S. T. Cole, R. A. Trimm, B. Diffey, R. L. Fork, and A. S. Keys, "Electrically Tunable Delays Using Quantum Wells in a Distributed Bragg Reflector," in Enabling Photonic Technologies for Aerospace Applications, Proc. SPIE 3714, 12-23 (1999).
  13. M. D. Tocci, M. J. Bloemer, M. Scalora, C. M. Bowden, and J. P. Dowling, "Spontaneous emission and nonlinear effects in photonic band gap materials," in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, eds., (Kluwer Academic Publishers, Dordrecht, Netherlands, 1996).
    [CrossRef]
  14. A. S. Keys, R. L. Fork, T. R. Nelson, Jr., and J. P. Loehr, "Resonant Transmissive Modulator Construction for use in Beam Steering Array," in Optical Scanning: Design and Application, L. Beiser, S. F. Sagan, G. F. Marshall, eds., Proc. SPIE 3787, 115-125 (1999).
  15. A. Thelen, A. V. Tikhonravov, and M. K. Trubetskov, "Push-button technology in optical coating design: pro et contra," in Advances in Optical Interference Coatings, C. Amra and H. A. MacLeod, eds., Proc. SPIE 3738, 210-220 (1999).
  16. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5508 (1996).
    [CrossRef]
  17. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122, (1990).
    [CrossRef]
  18. J. A. Trezza, K. Kang, J. S. Powell, C. G. Garvin, and R. D. Stack, "High-speed electrically controlled GaAs quantum well spatial light modulators: device creation and applications," Proc. SPIE 3292, 94-102 (1998).
    [CrossRef]
  19. H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, "Field-Induced Optical Effect in a Five-Step Asymmetric Coupled Quantum Well with Modified Potential," IEEE J. Quantum Mech. 34, 1197-1208 (1998).
    [CrossRef]
  20. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical Limiting and Switching of Ultrashort Pulses in Nonlinear Photonic Band Gap Materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
    [CrossRef] [PubMed]

Other (20)

R. L. Fork, S. T. Cole, L. J. Gamble, W. M. Diffey, and A. S. Keys, "Optical amplifier for space applications," Opt. Express 5, 292-301 (1999), http://www.opticsexpress.org/oearchive/source/14181.htm.
[CrossRef] [PubMed]

H. Hemmati, K. Wilson, M. K. Sue, L. J. Harcke, M. Wilhelm, C.-C.Chen, J. Lesh,Y.Feria, D. Rascoe, F. Lansing, and J. W. Layland, "Comparative Study of Optical and Radio-Frequency Communication Systems for a Deep-Space Mission," The Telecommunications and Data Acquisition Progress Report 42-128, Oct-Dec 1996, J. H. Yuen, ed., 1-33 (1996), http://tmo.jpl.nasa.gov/tmo/progress_report/42-128/title.htm.

J. R. P. Angel and N. J. Woolf, "An Imaging Nulling Interferometer to Study Extrasolar Planets," ApJ. 475, 373-379 (1997), http://www.journals.uchicago.edu/ApJ/journal/issues/ApJ/v475n1/34611/34611.html.
[CrossRef]

C.A. Beichman, N.J. Woolf, and C.A. Lindensmith, eds., TPF: Terrestrial Planet Finder, JPL Publication 99-003 (Jet Propulsion Laboratory, Pasadena, California, 1999), http://tpf.jpl.nasa.gov/library/tpf_book/index.html.

E. E. Montgomery and G. W. Zeiders, Jr., "The case for segmentation of the primary mirror of large aperture space telescopes," in Space Telescopes and Instruments V, Pierre Y. Bely, James B. Breckinridge, eds., Proc. SPIE 3356, 788-798 (1998).
[CrossRef]

P. Yeh, Optical Waves in Layered Media, (John Wiley and Sons, New York, 1988), Chapter 5.

M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, "Ultrashort pulse propagation at the photonic band edge: Large tunable group delay with minimal distortion and loss," Phys. Rev. E 54, R1078-R1081 (1996).
[CrossRef]

See, for example, M. Born and E. Wolf, Principles of Optics, Second Revised Edition (Pergamon Press, The MacMillan Co., New York, 1964).

E. D. Palik, "Gallium Arsenide (GaAs)" in Handbook of optical constants of solids, Edward D. Palik, ed. (Academic Press, San Diego 1985).

W. J. Tropf, M. E. Thomas, and T. J. Harris, "Properties of Crystals and Glasses," in Handbook of Optics, Vol. II, Second Edition, Michael Bass, Eric W. Van Stryland, David R. Williams, William L. Wolfe, eds., p. 33.61 (McGraw-Hill, Inc., New York, 1995).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect," Phys. Rev. Lett. 53, 2173-2176 (1984).
[CrossRef]

T. R. Nelson, Jr., J. P. Loehr, Q. Xie, J. E. Ehret, J. E. Van Nostrand, L. Gamble, D. K. Jones, S. T. Cole, R. A. Trimm, B. Diffey, R. L. Fork, and A. S. Keys, "Electrically Tunable Delays Using Quantum Wells in a Distributed Bragg Reflector," in Enabling Photonic Technologies for Aerospace Applications, Proc. SPIE 3714, 12-23 (1999).

M. D. Tocci, M. J. Bloemer, M. Scalora, C. M. Bowden, and J. P. Dowling, "Spontaneous emission and nonlinear effects in photonic band gap materials," in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, eds., (Kluwer Academic Publishers, Dordrecht, Netherlands, 1996).
[CrossRef]

A. S. Keys, R. L. Fork, T. R. Nelson, Jr., and J. P. Loehr, "Resonant Transmissive Modulator Construction for use in Beam Steering Array," in Optical Scanning: Design and Application, L. Beiser, S. F. Sagan, G. F. Marshall, eds., Proc. SPIE 3787, 115-125 (1999).

A. Thelen, A. V. Tikhonravov, and M. K. Trubetskov, "Push-button technology in optical coating design: pro et contra," in Advances in Optical Interference Coatings, C. Amra and H. A. MacLeod, eds., Proc. SPIE 3738, 210-220 (1999).

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, "Application of the needle optimization technique to the design of optical coatings," Appl. Opt. 35, 5493-5508 (1996).
[CrossRef]

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122, (1990).
[CrossRef]

J. A. Trezza, K. Kang, J. S. Powell, C. G. Garvin, and R. D. Stack, "High-speed electrically controlled GaAs quantum well spatial light modulators: device creation and applications," Proc. SPIE 3292, 94-102 (1998).
[CrossRef]

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, "Field-Induced Optical Effect in a Five-Step Asymmetric Coupled Quantum Well with Modified Potential," IEEE J. Quantum Mech. 34, 1197-1208 (1998).
[CrossRef]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical Limiting and Switching of Ultrashort Pulses in Nonlinear Photonic Band Gap Materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmission function of a 100-layer Distributed Bragg Reflector. (a) Plot of transmission verses wavelength, showing narrow-band transmisison resonances on each side of the reflective bandgap region. (b) Plot of relative transmitted phase verses wavelength.

Fig. 2.
Fig. 2.

Plot of transmission characteristics for 100-layer DBR stack with 3 In0.2Ga0.8As quantum wells embedded within each layer of GaAs. (a) Detail of first transmission resonance on the long wavelength side of the reflective bandgap as modulated by QCSE in response to applied electric fields of 0 kV/cm and 100 kV/cm, (b) Detail of relative phase modulation in response to applied electric fields, (c) The difference between relative phase modulation levels representing the net phase modulation and its spectral dependence.

Fig. 3.
Fig. 3.

Plots of the transmission functions exhibited by the initial bandpass configuration and the optimized final bandpass configuration. The transmission axis ranges from 0.8 to 1.0 for the purpose of revealing transmission function details.

Fig. 4.
Fig. 4.

Plots of (a) the transmission function of the bandpass configuration when interrogated by p-polarization light at various angles of incidence; (b) the relative phase function at various angles of incidence; and (c) the relative phase modulation available at various angles of incidence.

Fig. 5.
Fig. 5.

Plots of (a) the transmission function of the bandpass configuration when interrogated by s-polarization light at various angles of incidence; (b) the relative phase function at various angles of incidence; and (c) the relative phase modulation available at various angles of incidence.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ω ( k ) = ( ω ) 0 + ( d ω dk ) 0 ( k k 0 ) + ( d 2 ω d k 2 ) 0 ( k k 0 ) 2 2 ! + + ( d n ω d k n ) 0 ( k k 0 ) n n ! + .
v p = ω k = Δ ϕ Δ t · λ 2 π n eff
Δ ϕ = Δ d 2 π n eff λ .
v g = ( d ω dk ) 0 = d dk ( k 0 ( v p ) 0 ) = ( v p ) 0 + k 0 ( d ( v p ) 0 dk ) .
v g = ( v p ) 0 λ 0 ( d ( v p ) 0 d λ ) .
S ( LH ) 50 A
S HLHLHLH ( 9 HLHLHLHLHLHLHL 9 H ) 5 HLHLHLH A

Metrics