Abstract

We demonstrate the functionality of an en-face optical coherence tomography (OCT) system with images from the retina and skin. En-face images collected at different depths are subsequently used to reconstruct a 3D volume of the tissue. The reconstruction allows software inferred OCT longitudinal images at any transversal position in the stack. The position in depth in the stack before creating longitudinal OCT images is also adjustable, offering a valuable guidance tool for exploring the 3D volume of the tissue. This is illustrated by Quick time movies showing either depth or lateral exploration along one of two possible different directions in the stack of transversal OCT images. Sufficient accuracy of the volume rendered is obtained in 20 seconds when the system operates at 2 frames a second. The system, equipped with the 3D rendering feature acts as a valuable diagnostic tool allowing “peeling off” of transversal and longitudinal biologic material to investigate different internal features.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: A New Optical Evaluation Technique," Opt. Lett. 12, 158-160 (1987).
    [CrossRef] [PubMed]
  2. D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science, 254 1178-1181 (1991).
    [CrossRef] [PubMed]
  3. C. Puliafito, Optical coherence tomography of ocular diseases, (Thorofare, NJ, SLACK Inc., 1996).
  4. J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology, 191, 93-98 (1995).
    [CrossRef] [PubMed]
  5. A. Pagnoni, A. Knuettel, P. Welker, M. Rist, T. Stoudemayer, L. Kolbe, I. Sadiq and A. M. Kligman, "Optical coherence tomography in dermatology," Skin Research and Technology, 5, 83-87 (1995).
    [CrossRef]
  6. A. E. Elsner, L. Moraes, E. Beausencourt, A. Remky, S.A. Burns, J. J. Weiter, J. P. Walker, G. L. Wing, P. A. Raskauskas and L. M. Kelly, "Scanning laser reflectometry of retinal and subretinal tissues," Opt. Express, 6, 243-250 (2000), http://www.opticsexpress.org/oearchive/source/21766.htm.
    [CrossRef] [PubMed]
  7. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson and F. Fitzke "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed Optics, 3, 12-20 (1998).
    [CrossRef]
  8. C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, "Dispersion induced multiple signal peak splitting in partial coherence interferometry," Opt. Commun., 154, 179-185 (1998).
    [CrossRef]
  9. A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, D. A. Jackson, "Coherence imaging by use of a Newton rings sampling function," Opt. Lett. 21, 1789-1791 (1996).
    [CrossRef] [PubMed]
  10. A. Gh. Podoleanu, G. M. Dobre and D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett., 23, 147-149 (1998).
    [CrossRef]
  11. B. Hoeling, A. Fernandez, R. Haskell, E. Huang, W. Myers, D. Petersen, S. Ungersma, R. Wang, M. Williams and S. Fraser, "An optical coherence microscope for 3-dimensional imaging in developmental biology," Opt. Express 6, 136-145 (2000), http://www.opticsexpress.org/oearchive/source/19250.htm.
    [CrossRef] [PubMed]
  12. Y. Pan and D. Farkas, "Non-invasive Imaging of Living Human Skin with Dual-wavelength Optical Coherence Tomography in Two and Three Dimensions," J. Biomed Optics, 3, 446-455 (1998).
    [CrossRef]
  13. S.A. Boppart, G.J. Tearney, B.E. Bouma, J.F. Southern, M.E. Brezinski, and J.G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
    [CrossRef] [PubMed]
  14. J. Barton, J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, A.J. Welch, "Three-Dimensional Reconstruction of Blood Vessels from in vivo Color Doppler Optical Coherence Tomography Images," Clinical and Laboratory Investigations Dermatology, 198, 355-361 (1999).
  15. L. Giniunas, R. Danielius, Karkockas, "Scanning delay line with a rotating-parallelogram prism for low-coherence interferometry," Appl. Opt. 38, 7076-7079 (1999).
    [CrossRef]
  16. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, No.6, 219-229 (1998), http://www.opticsexpress.org/oearchive/source/5873.htm
    [CrossRef] [PubMed]
  17. A. Gh.Podoleanu, J. A. Rogers, D. A. Jackson, "OCT En-face Images from the retina with adjustable depth resolution in real time," IEEE Journal of Selected Topics in Quantum Electron. 5, 1176-1184, (1999).
    [CrossRef]
  18. R. Rajadhyaksha, R. Anderson and R. Webb, "Video-rate confocal scanning laser microscope for imaging human tissues in vivo," Appl. Opt. 38, 2105-2115 (1999).
    [CrossRef]
  19. A. Gh. Podoleanu and D. A. Jackson, "Noise Analysis of a combined optical coherence tomography and confocal scanning ophthalmoscope," Appl. Opt. 38, 2116-2127 (1999).
    [CrossRef]
  20. A. Gh. Podoleanu, "Unbalanced versus balanced operation in an OCT system," Appl. Opt. 39, 173-182 (2000).
    [CrossRef]
  21. B. R. Masters, "Three-dimensional confocal microscopy of the human optic nerve in vivo," Opt. Express 3, 356-359 (1998), http://www.opticsexpress.org/oearchive/source/6295.htm
    [CrossRef] [PubMed]
  22. Web page of the New York Eye and Ear infirmery: http://www.nyee.edu/glaucoma/octdata.htm.

Other (22)

R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: A New Optical Evaluation Technique," Opt. Lett. 12, 158-160 (1987).
[CrossRef] [PubMed]

D. Huang, E.A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science, 254 1178-1181 (1991).
[CrossRef] [PubMed]

C. Puliafito, Optical coherence tomography of ocular diseases, (Thorofare, NJ, SLACK Inc., 1996).

J. M. Schmitt, M. J. Yadlowsky, R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology, 191, 93-98 (1995).
[CrossRef] [PubMed]

A. Pagnoni, A. Knuettel, P. Welker, M. Rist, T. Stoudemayer, L. Kolbe, I. Sadiq and A. M. Kligman, "Optical coherence tomography in dermatology," Skin Research and Technology, 5, 83-87 (1995).
[CrossRef]

A. E. Elsner, L. Moraes, E. Beausencourt, A. Remky, S.A. Burns, J. J. Weiter, J. P. Walker, G. L. Wing, P. A. Raskauskas and L. M. Kelly, "Scanning laser reflectometry of retinal and subretinal tissues," Opt. Express, 6, 243-250 (2000), http://www.opticsexpress.org/oearchive/source/21766.htm.
[CrossRef] [PubMed]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson and F. Fitzke "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed Optics, 3, 12-20 (1998).
[CrossRef]

C. K. Hitzenberger, A. Baumgartner, A. F. Fercher, "Dispersion induced multiple signal peak splitting in partial coherence interferometry," Opt. Commun., 154, 179-185 (1998).
[CrossRef]

A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, D. A. Jackson, "Coherence imaging by use of a Newton rings sampling function," Opt. Lett. 21, 1789-1791 (1996).
[CrossRef] [PubMed]

A. Gh. Podoleanu, G. M. Dobre and D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett., 23, 147-149 (1998).
[CrossRef]

B. Hoeling, A. Fernandez, R. Haskell, E. Huang, W. Myers, D. Petersen, S. Ungersma, R. Wang, M. Williams and S. Fraser, "An optical coherence microscope for 3-dimensional imaging in developmental biology," Opt. Express 6, 136-145 (2000), http://www.opticsexpress.org/oearchive/source/19250.htm.
[CrossRef] [PubMed]

Y. Pan and D. Farkas, "Non-invasive Imaging of Living Human Skin with Dual-wavelength Optical Coherence Tomography in Two and Three Dimensions," J. Biomed Optics, 3, 446-455 (1998).
[CrossRef]

S.A. Boppart, G.J. Tearney, B.E. Bouma, J.F. Southern, M.E. Brezinski, and J.G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

J. Barton, J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, A.J. Welch, "Three-Dimensional Reconstruction of Blood Vessels from in vivo Color Doppler Optical Coherence Tomography Images," Clinical and Laboratory Investigations Dermatology, 198, 355-361 (1999).

L. Giniunas, R. Danielius, Karkockas, "Scanning delay line with a rotating-parallelogram prism for low-coherence interferometry," Appl. Opt. 38, 7076-7079 (1999).
[CrossRef]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee and J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, No.6, 219-229 (1998), http://www.opticsexpress.org/oearchive/source/5873.htm
[CrossRef] [PubMed]

A. Gh.Podoleanu, J. A. Rogers, D. A. Jackson, "OCT En-face Images from the retina with adjustable depth resolution in real time," IEEE Journal of Selected Topics in Quantum Electron. 5, 1176-1184, (1999).
[CrossRef]

R. Rajadhyaksha, R. Anderson and R. Webb, "Video-rate confocal scanning laser microscope for imaging human tissues in vivo," Appl. Opt. 38, 2105-2115 (1999).
[CrossRef]

A. Gh. Podoleanu and D. A. Jackson, "Noise Analysis of a combined optical coherence tomography and confocal scanning ophthalmoscope," Appl. Opt. 38, 2116-2127 (1999).
[CrossRef]

A. Gh. Podoleanu, "Unbalanced versus balanced operation in an OCT system," Appl. Opt. 39, 173-182 (2000).
[CrossRef]

B. R. Masters, "Three-dimensional confocal microscopy of the human optic nerve in vivo," Opt. Express 3, 356-359 (1998), http://www.opticsexpress.org/oearchive/source/6295.htm
[CrossRef] [PubMed]

Web page of the New York Eye and Ear infirmery: http://www.nyee.edu/glaucoma/octdata.htm.

Supplementary Material (4)

» Media 1: MOV (2363 KB)     
» Media 2: MOV (1246 KB)     
» Media 3: MOV (1513 KB)     
» Media 4: MOV (2352 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Three modes of operation of the three scanners in an OCT system.

Fig. 2.
Fig. 2.

(2.37 MB) Movie of three-dimensional in vivo optic nerve. The volume is explored from the retinal nerve fiber layer to the retinal pigment epithelium, along the optic axis. Volume size: 3 mm×3 mm×1.1 mm (air).

Fig. 3.
Fig. 3.

(1.25 MB) (Y,Z) longitudinal slices in the stack of transversal OCT images from in vivo optic nerve at different X positions. Volume size: 3 mm×3 mm×1.1 mm (air).

Fig. 4.
Fig. 4.

(1.5 MB) Movie of three-dimensional in vivo finger tip. The volume is explored from the outside to the inside of the finger, along the optic axis. Volume size: 5 mm×4 mm×1 mm (air).

Fig. 5.
Fig. 5.

(2.3 MB) (Y,Z) longitudinal slices in the stack of transversal OCT images from in vivo finger tip at different X positions. Volume size: 5 mm×4 mm×1 mm (air).

Metrics