Abstract

We use calculation and simulation to characterize an all-reflective monolithic gyroscopic structure that supports 3 sets of orthogonal, spatially dense and continuous helical optical paths. This gyroscope differs from current fiber optic and ring laser gyroscopes primarily in the free space multi-turn nature of the optical path. The design also creates opportunities for introducing gain while minimizing spontaneous emission noise from those gain regions. The achievable angular measurement precision for each axis, given ideal components and no gain, is calculated to be ~0.001°/hr for a structure of ~6.5 cm diameter, ~1 watt average optical power, and a wavelength of 0.5 µm. For fixed power, the uncertainty scales as the reciprocal cube of the diameter of the structure. While the fabrication and implementation requirements are challenging, the needed reflectivities and optical surface quality have been demonstrated in more conventional optics. In particular, the low mass, compact character, and all reflective optics offer advantages for applications in space.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. William K. Burns, Optical Fiber Rotation Sensing, (Academic Press, Inc., New York1994).
  2. Anthony E. Siegman, Lasers, (University Science Books., Mill Valley, CA1986).
  3. A.F. Stewart, S. Lu, M. Tehrani, and C. Volk, “Ion beam Sputtering of Optical Coatings,” SPIE 2114, 662–677 (1994).
    [Crossref]
  4. Richard L. Fork, Spencer T. Cole, Lisa J. Gamble, William M. Diffey, and Andrew S. Keys, “Optical amplifier for space applications,” Optics Express 5, 292–301 (1999). http://www.opticsexpress.org/oearchive/source/14181.htm.
    [Crossref] [PubMed]
  5. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High- Power Solid-State Lasers,” Applied Physics B 58, 365–372 (1994).
    [Crossref]

1999 (1)

Richard L. Fork, Spencer T. Cole, Lisa J. Gamble, William M. Diffey, and Andrew S. Keys, “Optical amplifier for space applications,” Optics Express 5, 292–301 (1999). http://www.opticsexpress.org/oearchive/source/14181.htm.
[Crossref] [PubMed]

1994 (2)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High- Power Solid-State Lasers,” Applied Physics B 58, 365–372 (1994).
[Crossref]

A.F. Stewart, S. Lu, M. Tehrani, and C. Volk, “Ion beam Sputtering of Optical Coatings,” SPIE 2114, 662–677 (1994).
[Crossref]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High- Power Solid-State Lasers,” Applied Physics B 58, 365–372 (1994).
[Crossref]

Burns, William K.

William K. Burns, Optical Fiber Rotation Sensing, (Academic Press, Inc., New York1994).

Cole, Spencer T.

Richard L. Fork, Spencer T. Cole, Lisa J. Gamble, William M. Diffey, and Andrew S. Keys, “Optical amplifier for space applications,” Optics Express 5, 292–301 (1999). http://www.opticsexpress.org/oearchive/source/14181.htm.
[Crossref] [PubMed]

Diffey, William M.

Richard L. Fork, Spencer T. Cole, Lisa J. Gamble, William M. Diffey, and Andrew S. Keys, “Optical amplifier for space applications,” Optics Express 5, 292–301 (1999). http://www.opticsexpress.org/oearchive/source/14181.htm.
[Crossref] [PubMed]

Fork, Richard L.

Richard L. Fork, Spencer T. Cole, Lisa J. Gamble, William M. Diffey, and Andrew S. Keys, “Optical amplifier for space applications,” Optics Express 5, 292–301 (1999). http://www.opticsexpress.org/oearchive/source/14181.htm.
[Crossref] [PubMed]

Gamble, Lisa J.

Richard L. Fork, Spencer T. Cole, Lisa J. Gamble, William M. Diffey, and Andrew S. Keys, “Optical amplifier for space applications,” Optics Express 5, 292–301 (1999). http://www.opticsexpress.org/oearchive/source/14181.htm.
[Crossref] [PubMed]

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High- Power Solid-State Lasers,” Applied Physics B 58, 365–372 (1994).
[Crossref]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High- Power Solid-State Lasers,” Applied Physics B 58, 365–372 (1994).
[Crossref]

Keys, Andrew S.

Richard L. Fork, Spencer T. Cole, Lisa J. Gamble, William M. Diffey, and Andrew S. Keys, “Optical amplifier for space applications,” Optics Express 5, 292–301 (1999). http://www.opticsexpress.org/oearchive/source/14181.htm.
[Crossref] [PubMed]

Lu, S.

A.F. Stewart, S. Lu, M. Tehrani, and C. Volk, “Ion beam Sputtering of Optical Coatings,” SPIE 2114, 662–677 (1994).
[Crossref]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High- Power Solid-State Lasers,” Applied Physics B 58, 365–372 (1994).
[Crossref]

Siegman, Anthony E.

Anthony E. Siegman, Lasers, (University Science Books., Mill Valley, CA1986).

Stewart, A.F.

A.F. Stewart, S. Lu, M. Tehrani, and C. Volk, “Ion beam Sputtering of Optical Coatings,” SPIE 2114, 662–677 (1994).
[Crossref]

Tehrani, M.

A.F. Stewart, S. Lu, M. Tehrani, and C. Volk, “Ion beam Sputtering of Optical Coatings,” SPIE 2114, 662–677 (1994).
[Crossref]

Volk, C.

A.F. Stewart, S. Lu, M. Tehrani, and C. Volk, “Ion beam Sputtering of Optical Coatings,” SPIE 2114, 662–677 (1994).
[Crossref]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High- Power Solid-State Lasers,” Applied Physics B 58, 365–372 (1994).
[Crossref]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High- Power Solid-State Lasers,” Applied Physics B 58, 365–372 (1994).
[Crossref]

Applied Physics B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High- Power Solid-State Lasers,” Applied Physics B 58, 365–372 (1994).
[Crossref]

Optics Express (1)

Richard L. Fork, Spencer T. Cole, Lisa J. Gamble, William M. Diffey, and Andrew S. Keys, “Optical amplifier for space applications,” Optics Express 5, 292–301 (1999). http://www.opticsexpress.org/oearchive/source/14181.htm.
[Crossref] [PubMed]

SPIE (1)

A.F. Stewart, S. Lu, M. Tehrani, and C. Volk, “Ion beam Sputtering of Optical Coatings,” SPIE 2114, 662–677 (1994).
[Crossref]

Other (2)

William K. Burns, Optical Fiber Rotation Sensing, (Academic Press, Inc., New York1994).

Anthony E. Siegman, Lasers, (University Science Books., Mill Valley, CA1986).

Supplementary Material (2)

» Media 1: MOV (573 KB)     
» Media 2: MOV (575 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

. Movie (1.4 MB) of a single family of mirror facets and a partial rendering of the beam paths for the two counterpropagating beams that sense rotation about the axis normal to circumscribed area

Fig. 1.
Fig. 1.

. Movie (2.2 MB) of three families of mirrors that sense rotation about three orthogonal axes. The video exhibits all three families most clearly.

Figure 2.
Figure 2.

A grid of rays is passed through two facing paraboloids to analyze beam distortions.

Figure 3.
Figure 3.

To determine the effect of multiple reflections from a paraboloidal surface, we used ASAP to simulate the beam propagation. The beam spot diagram and intensity profile for the initial beam are shown in a) and b), respectively. A reflection off the first paraboloid has a marked effect, as is shown in the spot diagram and profile parts c) and d).

Figure 4.
Figure 4.

A reflection off the second paraboloid has the opposite effect of the reflection from the first paraboloid, and the resulting spot diagram and beam profile shown here in parts a) and b), respectively, show a strong similarity to those of the initial beam in Fig. 3 parts a) and b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ Ω c o LD λ o 2 ( n ph η τ ) 1 2 = c o 4 NA λ o 2 ( n ph η τ ) 1 2

Metrics