Abstract

This paper discusses a numerical method for computing the electromagnetic modes supported by multilayer planar optical waveguides constructed from lossy or active media, having in general a diagonal permittivity tensor. The method solves the dispersion equations in the complex plane via the Cauchy integration method. It is applicable to lossless, lossy and active waveguides, and to AntiResonant Reflecting Optical Waveguides (ARROW’s). Analytical derivatives for the dispersion equations are derived and presented for what is believed to be the first time, and a new algorithm that significantly reduces the time required to compute the derivatives is given. This has a double impact: improved accuracy and reduced computation time compared to the standard approach. A different integration contour, which is suitable for leaky modes is also presented. Comparisons are made with results found in the literature; excellent agreement is noted for all comparisons made.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Chilwell and I. Hodgkinson, " Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguide," J. Opt. Soc. Am. A 1, 742-753, (1984)
    [CrossRef]
  2. L. M. Walpita, " Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix," J. Opt. Soc. Am. A 2, 595-602, (1985)
    [CrossRef]
  3. K. H. Schlereth and M. Tacke, "The complex propagation constant of multilayer waveguides: An algorithm for a personal computer," IEEE J. Quantum Electron., 26, 627-630, (1990)
    [CrossRef]
  4. L. Sun and E. Marhic, "Numerical study of attenuation in multilayer infrared waveguides by the circle-chain convergence method," J. Opt. Soc. Am. B 8, 478-483, (1991)
    [CrossRef]
  5. L. M. Delves and J. N. Lyness, "A numerical method for locating the zeros of an analytic function," Math. Comp., 21, 543-560, (1967)
    [CrossRef]
  6. L. C. Botten and M. S. Craig, "Complex zeros of analytic functions," Comput. Phys. Commun. 29, 245- 259, (1983)
    [CrossRef]
  7. E. Anemogiannis, and E. N. Glytsis, "Multilayer waveguides: efficient numerical analysis of general structures," J. Lightwave Tech. 10, 1344-1351, (1992)
    [CrossRef]
  8. R. E. Smith, S. N. Houde-Walter, and G. W. Forbes, " Mode determination for planar waveguides using the four-sheeted dispersion relation," IEEE J. Quantum Electron. 28, 1520-1526, (1992)
    [CrossRef]
  9. Hermann A. Haus, Waves and Fields in Optoelectronics, (New Jersey, Prentice-Hall Inc., 1984). Ch. 11
  10. J. W. Brown and R. V. Churchill, Complex Variables and Applications, (Sixth Edition, New York: McGraw-Hill, 1996)
  11. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C, (Second Edition, Cambridge, 1994).
  12. J. R. Rice, Numerical Methods, Software, and Analysis, (IMSL Reference Edition. New York: McGraw-Hill, 1983)
  13. A. S. Kronrod, Nodes and Weights of Quadrature Formulas, (NewYork: Consultants Bureau, 1965)
  14. E. Anemogiannis, E. N. Glytsis and T. K. Gaylord, "Efficient solution of eigenvalue equations of optical waveguiding structures," J. Lightwave Tech. 12, 2080-2084, (1994)
    [CrossRef]
  15. T. Baba and Y. Kokubun, "Dispersion and radiation loss characteristics of antiresonsnt reflecting optical waveguides-Numerical Results and Analytical Expressions," IEEE J. Quantum Electron., 28, 1689-1700, (1992)
    [CrossRef]
  16. W. Huang, R. M. Shubiar, A. Nathan and Y. L. Chow, "The modal characteristics of ARROW structures," J. Lightwave Tech. 10, 1015-1022. (1992)
    [CrossRef]
  17. J. Deng and Y. Huang,"A novel hybrid coupler based on antiresonant reflecting optical waveguides," J. Lightwave Tech. 16, 1062-1069, (1998)
    [CrossRef]
  18. B. Ray and G W. Hanson, "Some effects of anisotropy on planar antiresonant reflecting optical waveguides," J. Lightwave Tech. 14, 202-208, (1996)
    [CrossRef]
  19. E. Anemogiannis, E. N. Glytsis and T. K. Gaylord, "Determination of guided and leaky modes in lossless and lossy planar multiplayer optical waveguides: reflection pole method and wavevector density method," J. Lightwave Tech. 17, 929-941, (1999)
    [CrossRef]

Other

J. Chilwell and I. Hodgkinson, " Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguide," J. Opt. Soc. Am. A 1, 742-753, (1984)
[CrossRef]

L. M. Walpita, " Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix," J. Opt. Soc. Am. A 2, 595-602, (1985)
[CrossRef]

K. H. Schlereth and M. Tacke, "The complex propagation constant of multilayer waveguides: An algorithm for a personal computer," IEEE J. Quantum Electron., 26, 627-630, (1990)
[CrossRef]

L. Sun and E. Marhic, "Numerical study of attenuation in multilayer infrared waveguides by the circle-chain convergence method," J. Opt. Soc. Am. B 8, 478-483, (1991)
[CrossRef]

L. M. Delves and J. N. Lyness, "A numerical method for locating the zeros of an analytic function," Math. Comp., 21, 543-560, (1967)
[CrossRef]

L. C. Botten and M. S. Craig, "Complex zeros of analytic functions," Comput. Phys. Commun. 29, 245- 259, (1983)
[CrossRef]

E. Anemogiannis, and E. N. Glytsis, "Multilayer waveguides: efficient numerical analysis of general structures," J. Lightwave Tech. 10, 1344-1351, (1992)
[CrossRef]

R. E. Smith, S. N. Houde-Walter, and G. W. Forbes, " Mode determination for planar waveguides using the four-sheeted dispersion relation," IEEE J. Quantum Electron. 28, 1520-1526, (1992)
[CrossRef]

Hermann A. Haus, Waves and Fields in Optoelectronics, (New Jersey, Prentice-Hall Inc., 1984). Ch. 11

J. W. Brown and R. V. Churchill, Complex Variables and Applications, (Sixth Edition, New York: McGraw-Hill, 1996)

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C, (Second Edition, Cambridge, 1994).

J. R. Rice, Numerical Methods, Software, and Analysis, (IMSL Reference Edition. New York: McGraw-Hill, 1983)

A. S. Kronrod, Nodes and Weights of Quadrature Formulas, (NewYork: Consultants Bureau, 1965)

E. Anemogiannis, E. N. Glytsis and T. K. Gaylord, "Efficient solution of eigenvalue equations of optical waveguiding structures," J. Lightwave Tech. 12, 2080-2084, (1994)
[CrossRef]

T. Baba and Y. Kokubun, "Dispersion and radiation loss characteristics of antiresonsnt reflecting optical waveguides-Numerical Results and Analytical Expressions," IEEE J. Quantum Electron., 28, 1689-1700, (1992)
[CrossRef]

W. Huang, R. M. Shubiar, A. Nathan and Y. L. Chow, "The modal characteristics of ARROW structures," J. Lightwave Tech. 10, 1015-1022. (1992)
[CrossRef]

J. Deng and Y. Huang,"A novel hybrid coupler based on antiresonant reflecting optical waveguides," J. Lightwave Tech. 16, 1062-1069, (1998)
[CrossRef]

B. Ray and G W. Hanson, "Some effects of anisotropy on planar antiresonant reflecting optical waveguides," J. Lightwave Tech. 14, 202-208, (1996)
[CrossRef]

E. Anemogiannis, E. N. Glytsis and T. K. Gaylord, "Determination of guided and leaky modes in lossless and lossy planar multiplayer optical waveguides: reflection pole method and wavevector density method," J. Lightwave Tech. 17, 929-941, (1999)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1.
Figure 1.

Structure of the multilayer planar optical waveguide

Figure 2.
Figure 2.

The integral contours in the complex plane. The ‘ 1 correspond to the poles, ñ max is the complex refractive index with the maximum real part and is enclosed by C1, for TE modes in anisotropic media: ñ max=ñ yymax, ñs =ñyys and ñc =ñyyc . For TM modes in anisotropic media: ñ max=ñ xxmax, ñs =ñxxs and ñc =ñxxc .

Figure 3.
Figure 3.

Comparison of the normalized execution times required for the ADR and the CIM based on a numerical derivative (ND) and an analytical derivative (AD).

Figure 4.
Figure 4.

(a) Field distribution for the symmetric TM mode: TM1. (b) Field distribution for the first anti-symmetric TM mode: TM2.

Tables (5)

Tables Icon

TABLE I. Effective Index of Guided Modes Supported by an Inhomogeneous Waveguide.

Tables Icon

TABLE II. Effective Index of Guided Modes Supported by a 6-layer Quantum Well Active Waveguide.

Tables Icon

TABLE III. Effective Index of Leaky Modes Supported by a 4-layer Lossless Waveguide.

Tables Icon

TABLE IV. Effective Index of ARROW Modes Supported by a 9-layer ARROW Waveguide

Tables Icon

TABLE V. Effective Index of ARROW Modes Supported by a 3-layer Anisotropic ARROW Waveguide

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

× E = j ω μ 0 H
× H = j ω ε 0 ε ¯ ¯ r E
ε ¯ ¯ r = [ ε ˜ r , xx ε ˜ r , yy ε ˜ r , zz ] = [ n ˜ xx 2 n ˜ yy 2 n ˜ zz 2 ]
E i = y ̂ E yi ( x ) exp ( j ω t j γ ˜ z )
H i = [ x ̂ H xi ( x ) + z ̂ H zi ( x ) ] exp ( j ω t j γ ˜ z )
d 2 E yi ( x ) dx + κ ˜ i 2 E yi ( x ) = 0
H zi ( x ) = j ω μ 0 dE yi ( x ) dx
H xi ( x ) = γ ˜ ω μ 0 E yi ( x )
E yi ( x ) = cos [ κ ˜ i ( x x i ) ] E yi ( x i ) + 1 κ ˜ i sin [ κ ˜ i ( x x i ) ] dE yi ( x i ) dx
dE yi ( x i ) dx = κ ˜ i sin [ κ ˜ i ( x x i ) ] E yi ( x i ) + cos [ κ ˜ i ( x x i ) ] dE yi ( x i ) dx
( E yi ( x i ) dE yi ( x i ) dx ) = ( cos [ κ ˜ i ( x x i ) ] 1 κ ˜ i sin [ κ ˜ i ( x x i ) ] κ ˜ i sin [ κ ˜ i ( x x i ) ] cos [ κ ˜ i ( x x i ) ] ) ( E yi ( x ) dE yi ( x ) dx )
( E ys dE ys dx ) = i = 1 r M i ( E yc dE yc dx )
= ( m 11 m 12 m 21 m 22 ) ( E yc dE yc dx )
M i = ( cos ( κ ˜ i d i ) 1 κ ˜ i sin ( κ ˜ i d i ) κ ˜ i sin ( κ ˜ i d i ) cos ( κ ˜ i d i ) ) for i = 1 , 2 , , r
E ys ( x ) = A s exp ( γ ˜ s x ) dE ys ( x ) dx = γ ˜ s A s exp ( γ ˜ s x ) } for x 0
E yc ( x ) = B c exp [ γ ˜ c ( x x r + 1 ) ] dE yc ( x ) dx = γ ˜ c B c exp [ γ ˜ c ( x x r + 1 ) ] } for x x r + 1
F ( γ ˜ ) = γ ˜ s m 11 + γ ˜ c m 22 m 21 γ ˜ s γ ˜ c m 12 = 0
d 2 H yi ( x ) dx + κ ˜ i 2 H yi ( x ) = 0
E zi ( x ) = j ω ε 0 n ˜ zzi 2 dH yi ( x ) dx
E xi ( x ) = γ ˜ ω ε 0 n ˜ xxi 2 H yi ( x )
M i = ( cos ( κ ˜ i d i ) n ˜ zzi 2 κ ˜ i sin ( κ ˜ i d i ) κ ˜ i n ˜ zzi 2 sin ( κ ˜ i d i ) cos ( κ ˜ i d i ) ) for i = 1 , 2 , , r
F ( γ ˜ ) = γ ˜ s n ˜ zzs 2 m 11 + γ ˜ c n ˜ zzc 2 m 22 m 21 γ ˜ s γ ˜ c n ˜ zzs 2 n ˜ zzc 2 m 12 = 0
S 0 = 1 j 2 π c f ( z ) f ( z ) dz = N z N p
S m = 1 j 2 π c z m f ( z ) f ( z ) dz = i = 1 s 0 z i m for m = 1 , 2 , , S 0
p ( z ) = i = 1 s 0 ( z z i ) = k = 0 s 0 C k z k
C k = 1 ( k S 0 ) j = 1 s 0 k S j C k + j for k = S 0 1 , , 0
f ( z 0 ) = 1 j 2 π D f ( z ) ( z z 0 ) 2 dz
R f ( z 0 ) R [ f ( z 0 ) ] m = 1 m l = 1 m f ( z 0 + Re j 2 π m l ) e j 2 π m l
a b F ( z ) = i = 1 K W i F ( z i )
dM i d u ˜ = u ˜ ( k 0 2 d i κ ˜ i sin ( κ ˜ i d i ) k 0 2 d i κ ˜ i 2 cos ( κ ˜ i d i ) k 0 κ ˜ i 3 sin ( κ ˜ i d i ) k 0 2 κ ˜ i sin ( κ ˜ i d i ) k 0 2 d i cos ( κ ˜ i d i ) k 0 2 d i κ ˜ i sin ( κ ˜ i d i ) ) for i = 1 , , r
dM d u ˜ = ( dm 11 d u ˜ dm 12 d u ˜ dm 21 d u ˜ dm 22 d u ˜ ) = j = 1 r ( dM j d u ˜ · i = 1 i j r M i )
dF ( u ˜ ) d u ˜ = k 0 2 u ˜ γ ˜ s m 11 + k 0 2 u ˜ γ ˜ c m 22 + γ ˜ s dm 11 d u ˜ + γ ˜ c dm 22 d u ˜ dm 21 d u ˜ k 0 2 u ˜ γ ˜ c γ ˜ s m 12 k 0 2 u ˜ γ ˜ s γ ˜ c m 12 γ ˜ s γ ˜ c dm 12 d u ˜
dM i d u ˜ = u ˜ ( k 2 d i κ ˜ i sin ( κ ˜ i d i ) k 2 n ˜ zzi 2 d i κ ˜ i 2 cos ( κ ˜ i d i ) k 2 n ˜ zzi 2 κ ˜ i 3 sin ( κ ˜ i d i ) k 2 κ ˜ i n ˜ zzi 2 sin ( κ ˜ i d i ) k 2 d i n ˜ zzi 2 cos ( κ ˜ i d i ) k 2 d i κ ˜ i sin ( κ ˜ i d i ) ) for i = 1 , , r
dF ( u ˜ ) d u ˜ = k 0 2 u ˜ γ ˜ s n ˜ xxs 2 m 11 + k 0 2 u ˜ γ ˜ c n ˜ xxc 2 m 22 + γ ˜ s n ˜ zzs 2 dm 11 d u ˜ + γ ˜ c n ˜ zzc 2 dm 22 d u ˜ dm 21 d u ˜ γ ˜ s γ ˜ c n ˜ zzs 2 n ˜ zzc 2 dm 12 d u ˜
k 0 2 u ˜ γ ˜ c n ˜ xxs 2 n ˜ zzc 2 γ ˜ s m 12 k 0 2 u ˜ γ ˜ s n ˜ xxc 2 n ˜ zzs 2 γ ˜ c m 12
n ( x ) = n s 2 + 2 Δ n s e ( x α ) for x < 0
n ( x ) = n c for x > 0

Metrics