G. Nordin, J. Meier, P. Deguzman, and M. Jones, “Micropolazier array for infrared imaging polarimetry,” J. Opt. Soc. Am. A, 16, 1168–1174 (1999).

[Crossref]

D. W. Prather, “Design and application of subwavelength diffractive lenses for integration with infrared photodectors,” Opt. Eng., 38, 870–878 (1999).

[Crossref]

D. W. Prather, S. Shi, and J. S. Bergey, “Field stitching algorithm for the analysis of electrically large diffractive optical elements,” Opt. Lett. 24, 273–275 (1999).

[Crossref]

D. W. Prather and S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A, 16, 1131–1142 (1999).

[Crossref]

D. A. Pommet, M. G. Moharam, and E. Gram, “Limits of scalar diffarction theory for diffractive phase elements,” J. Opt. Soc. Am. A, 11, 1827–1834 (1995).

[Crossref]

E. G. Johnson and M. A. G. Abushagur, “Microgenetic-algorithm optimization methods applied to dielectric gratings,” J. Opt. Soc. Am. A, 12, 1152–1160 (1995).

[Crossref]

J. N. Mait., “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A, 12, 2145–2158 (1995).

[Crossref]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[Crossref]

K. Krishnakumar, “Micro-genetic algorithm for stationary and non-stationary function optimization,” SPIE 1196, 289–296 (1989).

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Diffractive Optical Element for Stokes Vector Measurement With a Focal Plane Array,” in Polarization: Measurement, Analysis, and Remote Sensing II,Dennis H. Goldstein and David B. Chenault, Editors, Proceedings of SPIE, 3754, 169–177, (1999).

D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, (Addision-Wesley, Reading, Mass., 1989).

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Diffractive Optical Element for Stokes Vector Measurement With a Focal Plane Array,” in Polarization: Measurement, Analysis, and Remote Sensing II,Dennis H. Goldstein and David B. Chenault, Editors, Proceedings of SPIE, 3754, 169–177, (1999).

K. Krishnakumar, “Micro-genetic algorithm for stationary and non-stationary function optimization,” SPIE 1196, 289–296 (1989).

W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A, 15, 1599–1607 (1998).

[Crossref]

D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A, 14, 34–43 (1997).

[Crossref]

J. N. Mait., “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A, 12, 2145–2158 (1995).

[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Diffractive Optical Element for Stokes Vector Measurement With a Focal Plane Array,” in Polarization: Measurement, Analysis, and Remote Sensing II,Dennis H. Goldstein and David B. Chenault, Editors, Proceedings of SPIE, 3754, 169–177, (1999).

W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A, 15, 1599–1607 (1998).

[Crossref]

D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A, 14, 34–43 (1997).

[Crossref]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Diffractive Optical Element for Stokes Vector Measurement With a Focal Plane Array,” in Polarization: Measurement, Analysis, and Remote Sensing II,Dennis H. Goldstein and David B. Chenault, Editors, Proceedings of SPIE, 3754, 169–177, (1999).

D. W. Prather and S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A, 16, 1131–1142 (1999).

[Crossref]

D. W. Prather, “Design and application of subwavelength diffractive lenses for integration with infrared photodectors,” Opt. Eng., 38, 870–878 (1999).

[Crossref]

D. W. Prather, S. Shi, and J. S. Bergey, “Field stitching algorithm for the analysis of electrically large diffractive optical elements,” Opt. Lett. 24, 273–275 (1999).

[Crossref]

D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A, 14, 34–43 (1997).

[Crossref]

G. S. Smith, An Introduction to Classical Electromagnetic Radiation, (Cambridge Univ. Press, Cambridge, Mass., 1997).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass.,1995).

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[Crossref]

D. A. Pommet, M. G. Moharam, and E. Gram, “Limits of scalar diffarction theory for diffractive phase elements,” J. Opt. Soc. Am. A, 11, 1827–1834 (1995).

[Crossref]

D. W. Prather and S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A, 16, 1131–1142 (1999).

[Crossref]

G. Nordin, J. Meier, P. Deguzman, and M. Jones, “Micropolazier array for infrared imaging polarimetry,” J. Opt. Soc. Am. A, 16, 1168–1174 (1999).

[Crossref]

W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A, 15, 1599–1607 (1998).

[Crossref]

D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A, 14, 34–43 (1997).

[Crossref]

E. G. Johnson and M. A. G. Abushagur, “Microgenetic-algorithm optimization methods applied to dielectric gratings,” J. Opt. Soc. Am. A, 12, 1152–1160 (1995).

[Crossref]

J. N. Mait., “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A, 12, 2145–2158 (1995).

[Crossref]

D. W. Prather, “Design and application of subwavelength diffractive lenses for integration with infrared photodectors,” Opt. Eng., 38, 870–878 (1999).

[Crossref]

K. Krishnakumar, “Micro-genetic algorithm for stationary and non-stationary function optimization,” SPIE 1196, 289–296 (1989).

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Diffractive Optical Element for Stokes Vector Measurement With a Focal Plane Array,” in Polarization: Measurement, Analysis, and Remote Sensing II,Dennis H. Goldstein and David B. Chenault, Editors, Proceedings of SPIE, 3754, 169–177, (1999).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass.,1995).

G. S. Smith, An Introduction to Classical Electromagnetic Radiation, (Cambridge Univ. Press, Cambridge, Mass., 1997).

D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, (Addision-Wesley, Reading, Mass., 1989).