Abstract

Wideband, highly noise-suppressed squeezing was observed by using a high-speed, high-quantum-efficiency light-emitting diode. The squeezing bandwidth extended over 200 MHz. We also have investigated the dependence of the squeezing bandwidth on the pump-current at low temperature. The experimental result was compared with the theoretical predictions based on a unified model of the pump and recombination process and was well explained by the model at the thermionic emission limit.

© 2000 Optical Society of America

Full Article  |  PDF Article
Related Articles
Photon-number-squeezed recombination radiation in semiconductors

Malvin C. Teich, Federico Capasso, and Bahaa E. A. Saleh
J. Opt. Soc. Am. B 4(10) 1663-1666 (1987)

Producing squeezed light from conventionally pumped lasers

T. C. Ralph and C. M. Savage
J. Opt. Soc. Am. B 9(10) 1895-1903 (1992)

Wavelength-tunable amplitude-squeezed light from a room-temperature quantum-well laser

M. J. Freeman, R. Craig, D. R. Scifres, H. Wang, and D. G. Steel
Opt. Lett. 18(24) 2141-2143 (1993)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Kilper, D. G. Steel, R. Craig, and D. R. Scifres, “Polarization-dependent noise in photon-number squeezed light generated by quantum-well lasers,” Opt. Lett. 21, 1283–1285 (1996).
    [Crossref] [PubMed]
  2. G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yamanishi, “3 dB wideband squeezing in photon number fluctuations from a light emitting diode,” Jpn. J. Appl. Phys. 36, Part 1, 6350–6352 (1997).
    [Crossref]
  3. M. Kobayashi, Y. Kadoya, H. Yuji, R. Masuyama, and M. Yamanishi, “Squeezing of photon-number fluctuations in the frequency range wider than 300 MHz in light-emitting diodes at room temperature,” J. Opt. Soc. Am. B 17, 1257–1262 (2000).
    [Crossref]
  4. P. J. Edwards, “Sub-Poissonian electronic and photonic noise generation in semiconductor junctions,” Australian J. Phys. 53, 179–192 (2000).
  5. M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influences of backward-pump process on photon-number squeezing in a constant-current-driven heterojunction light-emitting-diode: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
    [Crossref]
  6. A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
    [Crossref]
  7. J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
    [Crossref]
  8. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
    [Crossref] [PubMed]
  9. P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
    [Crossref]
  10. M. C. Teich and B. Saleh, “Photon bunching and antibunching,” Progress in Optics 26, 1–104 (1988).
    [Crossref]
  11. J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
    [Crossref]
  12. J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yamanishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
    [Crossref]
  13. J. P. Bergman, C. Hallin, and E. Janzén, “Temperature dependence of the minority carrier lifetime in GaAs/AlGaAs double heterostructures,” J. Appl. Phys. 78, 4808 (1995).
    [Crossref]
  14. E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
    [Crossref] [PubMed]
  15. J. -F. Roch, J. -Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
    [Crossref] [PubMed]

2000 (2)

1999 (1)

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influences of backward-pump process on photon-number squeezing in a constant-current-driven heterojunction light-emitting-diode: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[Crossref]

1997 (3)

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yamanishi, “3 dB wideband squeezing in photon number fluctuations from a light emitting diode,” Jpn. J. Appl. Phys. 36, Part 1, 6350–6352 (1997).
[Crossref]

J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
[Crossref]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yamanishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[Crossref]

1996 (1)

1995 (2)

J. P. Bergman, C. Hallin, and E. Janzén, “Temperature dependence of the minority carrier lifetime in GaAs/AlGaAs double heterostructures,” J. Appl. Phys. 78, 4808 (1995).
[Crossref]

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[Crossref]

1993 (3)

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[Crossref] [PubMed]

J. -F. Roch, J. -Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[Crossref] [PubMed]

A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[Crossref]

1988 (1)

M. C. Teich and B. Saleh, “Photon bunching and antibunching,” Progress in Optics 26, 1–104 (1988).
[Crossref]

1987 (1)

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[Crossref]

1986 (1)

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[Crossref] [PubMed]

Abe, J.

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yamanishi, “3 dB wideband squeezing in photon number fluctuations from a light emitting diode,” Jpn. J. Appl. Phys. 36, Part 1, 6350–6352 (1997).
[Crossref]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yamanishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[Crossref]

Bergman, J. P.

J. P. Bergman, C. Hallin, and E. Janzén, “Temperature dependence of the minority carrier lifetime in GaAs/AlGaAs double heterostructures,” J. Appl. Phys. 78, 4808 (1995).
[Crossref]

Björk, G.

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[Crossref] [PubMed]

Craig, R.

Edwards, P. J.

P. J. Edwards, “Sub-Poissonian electronic and photonic noise generation in semiconductor junctions,” Australian J. Phys. 53, 179–192 (2000).

Goobar, E.

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[Crossref] [PubMed]

Grangier, P.

J. -F. Roch, J. -Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[Crossref] [PubMed]

Hallin, C.

J. P. Bergman, C. Hallin, and E. Janzén, “Temperature dependence of the minority carrier lifetime in GaAs/AlGaAs double heterostructures,” J. Appl. Phys. 78, 4808 (1995).
[Crossref]

Hirano, T.

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yamanishi, “3 dB wideband squeezing in photon number fluctuations from a light emitting diode,” Jpn. J. Appl. Phys. 36, Part 1, 6350–6352 (1997).
[Crossref]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yamanishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[Crossref]

Imamo?lu, A.

A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[Crossref]

Janzén, E.

J. P. Bergman, C. Hallin, and E. Janzén, “Temperature dependence of the minority carrier lifetime in GaAs/AlGaAs double heterostructures,” J. Appl. Phys. 78, 4808 (1995).
[Crossref]

Kadoya, Y.

M. Kobayashi, Y. Kadoya, H. Yuji, R. Masuyama, and M. Yamanishi, “Squeezing of photon-number fluctuations in the frequency range wider than 300 MHz in light-emitting diodes at room temperature,” J. Opt. Soc. Am. B 17, 1257–1262 (2000).
[Crossref]

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influences of backward-pump process on photon-number squeezing in a constant-current-driven heterojunction light-emitting-diode: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[Crossref]

Kan, H.

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[Crossref]

Karlsson, A.

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[Crossref] [PubMed]

Kilper, D. C.

Kim, J.

J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
[Crossref]

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[Crossref]

Kobayashi, M.

M. Kobayashi, Y. Kadoya, H. Yuji, R. Masuyama, and M. Yamanishi, “Squeezing of photon-number fluctuations in the frequency range wider than 300 MHz in light-emitting diodes at room temperature,” J. Opt. Soc. Am. B 17, 1257–1262 (2000).
[Crossref]

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influences of backward-pump process on photon-number squeezing in a constant-current-driven heterojunction light-emitting-diode: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[Crossref]

Kuga, T.

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yamanishi, “3 dB wideband squeezing in photon number fluctuations from a light emitting diode,” Jpn. J. Appl. Phys. 36, Part 1, 6350–6352 (1997).
[Crossref]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yamanishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[Crossref]

Machida, S.

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[Crossref] [PubMed]

Masuyama, R.

Nilsson, O.

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[Crossref] [PubMed]

Poizat, J. -Ph.

J. -F. Roch, J. -Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[Crossref] [PubMed]

Rarity, J. G.

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[Crossref]

Roch, J. -F.

J. -F. Roch, J. -Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[Crossref] [PubMed]

Saleh, B.

M. C. Teich and B. Saleh, “Photon bunching and antibunching,” Progress in Optics 26, 1–104 (1988).
[Crossref]

Satchell, J. S.

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[Crossref]

Scifres, D. R.

Shinozaki, G.

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yamanishi, “3 dB wideband squeezing in photon number fluctuations from a light emitting diode,” Jpn. J. Appl. Phys. 36, Part 1, 6350–6352 (1997).
[Crossref]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yamanishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[Crossref]

Steel, D. G.

Sumitomo, H.

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influences of backward-pump process on photon-number squeezing in a constant-current-driven heterojunction light-emitting-diode: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[Crossref]

Tapster, P. R.

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[Crossref]

Teich, M. C.

M. C. Teich and B. Saleh, “Photon bunching and antibunching,” Progress in Optics 26, 1–104 (1988).
[Crossref]

Yamamoto, Y.

J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
[Crossref]

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[Crossref]

A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[Crossref]

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[Crossref] [PubMed]

Yamanishi, M.

M. Kobayashi, Y. Kadoya, H. Yuji, R. Masuyama, and M. Yamanishi, “Squeezing of photon-number fluctuations in the frequency range wider than 300 MHz in light-emitting diodes at room temperature,” J. Opt. Soc. Am. B 17, 1257–1262 (2000).
[Crossref]

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influences of backward-pump process on photon-number squeezing in a constant-current-driven heterojunction light-emitting-diode: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[Crossref]

J. Abe, G. Shinozaki, T. Hirano, T. Kuga, and M. Yamanishi, “Observation of the collective Coulomb blockade effect in a constant-current-driven high-speed light-emitting diode,” J. Opt. Soc. Am. B 14, 1295–1298 (1997).
[Crossref]

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yamanishi, “3 dB wideband squeezing in photon number fluctuations from a light emitting diode,” Jpn. J. Appl. Phys. 36, Part 1, 6350–6352 (1997).
[Crossref]

Yuji, H.

Australian J. Phys. (1)

P. J. Edwards, “Sub-Poissonian electronic and photonic noise generation in semiconductor junctions,” Australian J. Phys. 53, 179–192 (2000).

Europhys. Lett. (1)

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[Crossref]

J. Appl. Phys. (1)

J. P. Bergman, C. Hallin, and E. Janzén, “Temperature dependence of the minority carrier lifetime in GaAs/AlGaAs double heterostructures,” J. Appl. Phys. 78, 4808 (1995).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

G. Shinozaki, J. Abe, T. Hirano, T. Kuga, and M. Yamanishi, “3 dB wideband squeezing in photon number fluctuations from a light emitting diode,” Jpn. J. Appl. Phys. 36, Part 1, 6350–6352 (1997).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
[Crossref] [PubMed]

Phys. Rev. B (3)

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[Crossref]

M. Kobayashi, M. Yamanishi, H. Sumitomo, and Y. Kadoya, “Influences of backward-pump process on photon-number squeezing in a constant-current-driven heterojunction light-emitting-diode: transition from thermionic emission to diffusion limits,” Phys. Rev. B 60, 16686–16700 (1999).
[Crossref]

J. Kim and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949–9959 (1997).
[Crossref]

Phys. Rev. Lett. (3)

A. Imamoḡlu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junctions: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[Crossref]

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[Crossref] [PubMed]

J. -F. Roch, J. -Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[Crossref] [PubMed]

Progress in Optics (1)

M. C. Teich and B. Saleh, “Photon bunching and antibunching,” Progress in Optics 26, 1–104 (1988).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. LED1 (sub-Poissonian mode) and LED2 (Poissonian mode) were driven by a constant current source. LED2 was weakly coupled with the photodiode (PD) (ηp <1%).

Fig. 2.
Fig. 2.

Pump-current dependence of the squeezing bandwidth. Theoretical curve for the thermionic emission limit (trace a, solid-red line) and for the diffusion limit (traces b, c, and d, dashed-blue lines). Trace a (Cdep =310 pF, τrad =0.72 ns) and trace b (Cdep =270 pF, τrad =0.62 ns) are chosen to fit the data in the lower and higher pump-current regime with 96 K. Trace c (Cdep =300 pF, τrad =0.42 ns) is the fit in the lower ILED , and trace d is the fit in the higher ILED .

Fig. 3.
Fig. 3.

Wideband squeezing observed at 48 K (lower) (ILED =4.1 mA, η=0.37). The squeezing bandwidth was estimated to be 165 MHz. For comparison, the data at room temperature (297 K) (upper) (ILED =5.6 mA, η=0.27) was also shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W t = 1 η 1 { 1 + ( 2 π f τ te ) 2 } { 1 + ( 2 π f τ rad ) 2 } ,
W d = 1 η 1 1 + { 2 π f ( τ te + τ rad ) } 2 .

Metrics