Abstract

This paper demonstrates experimental three-dimensional (3D) image reconstruction of optically heterogeneous turbid media from near-infrared continuous-wave measurements. Successful reconstruction is achieved through a full 3D finite-element based, Newton-type reconstruction algorithm. Our experimental evidence shows that both absorption and scattering images of a 10×15 mm cylindrical object embedded in a 50×50 mm cylindrical background can be reconstructed using our algorithm.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Yodh, B. Chance, "Spectroscopy and imgaing with diffusing light," Phys. Today 48, 3440(1995).
    [CrossRef]
  2. M. O'Leary, D. Boas, B. Chance, A. Yodh, "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20, 426-428(1995).
    [CrossRef]
  3. W. Cai, S. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, R. Alfano, "Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements," Appl. Opt. 38, 4237-4246(1999).
    [CrossRef]
  4. S. Colak, D. Papaioannou, G. tHooft, M. vander Mark, H. Schomberg, J. Paasschens, J. Melissen, N. van Asten, "Tomographic image reconstruction from optical projections in light diffusing media," Appl. Opt. 36, 180-213(1997).
    [CrossRef] [PubMed]
  5. H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, "Simultaneous reconstruction of absorption and scattering maps in turbid media from near-infrared frequency-domain data," Opt. Lett. 20, 2128-2130(1995).
    [CrossRef] [PubMed]
  6. B. Pogue, T. McBride, J. Prewitt, U. Osterberg, K. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961(1999).
    [CrossRef]
  7. J. Hebden, F. Schmidt, M. Fry, M. Schweiger, E. Hillman, D. Delpy, S. Arridge, "Simulataneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data," Opt. Lett. 24, 534-536 (1999).
    [CrossRef]
  8. H. Graber, J. Chang, J. Lubowsky, R. Aronson, R. Barbour, "Near infrared absorption imaging of dense scattering media by stead-state diffusion tomography," Proc. SPIE 1888, 372-386(1993).
    [CrossRef]
  9. D. Boas, "A fundamental limitation of linearized algorithms for diffuse optical tomography," Opt. Express 1, 404-413(1997), http://www.opticsexpress.org/oearchive/source/2831.htm
    [CrossRef] [PubMed]
  10. H. Jiang, "Three-dimensional optical image reconstruction: Finite element approach," Proc. of Advances in Optical Imaging and Photon Migration, Optical Society of America, 156-158(1998).
  11. M. Schweiger, S. Arridge, "Comparison of two- and three-dimensional reconstruction methods in optical tomography," Appl. Opt. 37, 7419-7428(1998).
    [CrossRef]
  12. M. Eppstein, D. Dougherty, D. Hawrysz, E. Sevick-Muraca, "Three-dimensional optical tomography," Proc. SPIE 3597, 97-105(1999).
    [CrossRef]
  13. S. Arridge, "A method for three-dimensional time-resolved optical tomography," Int. J. Imaging Syst. Technol. 11, 2-11(2000).
    [CrossRef]
  14. H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, "Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms," Phys. Med. Biol. 43, 675-693(1998).
    [CrossRef] [PubMed]
  15. N. Iftimia, H. Jiang, Appl. Opt. (in press).

Other

A. Yodh, B. Chance, "Spectroscopy and imgaing with diffusing light," Phys. Today 48, 3440(1995).
[CrossRef]

M. O'Leary, D. Boas, B. Chance, A. Yodh, "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20, 426-428(1995).
[CrossRef]

W. Cai, S. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, R. Alfano, "Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements," Appl. Opt. 38, 4237-4246(1999).
[CrossRef]

S. Colak, D. Papaioannou, G. tHooft, M. vander Mark, H. Schomberg, J. Paasschens, J. Melissen, N. van Asten, "Tomographic image reconstruction from optical projections in light diffusing media," Appl. Opt. 36, 180-213(1997).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, "Simultaneous reconstruction of absorption and scattering maps in turbid media from near-infrared frequency-domain data," Opt. Lett. 20, 2128-2130(1995).
[CrossRef] [PubMed]

B. Pogue, T. McBride, J. Prewitt, U. Osterberg, K. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961(1999).
[CrossRef]

J. Hebden, F. Schmidt, M. Fry, M. Schweiger, E. Hillman, D. Delpy, S. Arridge, "Simulataneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data," Opt. Lett. 24, 534-536 (1999).
[CrossRef]

H. Graber, J. Chang, J. Lubowsky, R. Aronson, R. Barbour, "Near infrared absorption imaging of dense scattering media by stead-state diffusion tomography," Proc. SPIE 1888, 372-386(1993).
[CrossRef]

D. Boas, "A fundamental limitation of linearized algorithms for diffuse optical tomography," Opt. Express 1, 404-413(1997), http://www.opticsexpress.org/oearchive/source/2831.htm
[CrossRef] [PubMed]

H. Jiang, "Three-dimensional optical image reconstruction: Finite element approach," Proc. of Advances in Optical Imaging and Photon Migration, Optical Society of America, 156-158(1998).

M. Schweiger, S. Arridge, "Comparison of two- and three-dimensional reconstruction methods in optical tomography," Appl. Opt. 37, 7419-7428(1998).
[CrossRef]

M. Eppstein, D. Dougherty, D. Hawrysz, E. Sevick-Muraca, "Three-dimensional optical tomography," Proc. SPIE 3597, 97-105(1999).
[CrossRef]

S. Arridge, "A method for three-dimensional time-resolved optical tomography," Int. J. Imaging Syst. Technol. 11, 2-11(2000).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, M. Patterson, "Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms," Phys. Med. Biol. 43, 675-693(1998).
[CrossRef] [PubMed]

N. Iftimia, H. Jiang, Appl. Opt. (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental geometry under study, with an off-centered object close to the x coordinate. The source/detector locations are also shown (right). All the dimensional units are in millimeter.

Fig. 2.
Fig. 2.

Reconstructed µa images at different cut-planes for the first test case. Refer to Fig. 1 for the definition of the cut-planes.

Fig. 3.
Fig. 3.

Reconstructed µa images at different cut-planes for the second test case. Refer to Fig. 1 for the definition of the cut-planes.

Fig. 4.
Fig. 4.

Reconstructed µs images at different cut-planes for the second test case. Refer to Fig. 1 for the definition of the cut-planes. Note that a small boundary region at the bottom side was cut off for the images shown in (c) and (d) in order to highlight the recovered object region.

Tables (1)

Tables Icon

Table 1: Recovered Geometric Information and Optical Properties of the Object

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

· D ( X , Y , Z ) Φ ( X , Y , Z ) μ a ( X , Y , Z ) Φ ( X , Y , Z ) = S ( X , Y , Z )
[ A ] { Φ } = { b }
[ A ] { Φ χ } = { b χ } [ A χ ] { Φ }
( T + λ I ) Δ χ = T ( Φ o Φ c )

Metrics