Abstract

A time-resolved Monte Carlo technique was used to simulate the propagation of polarized light in turbid media. Calculated quantities include the reflection Mueller matrices, the transmission Mueller matrices, and the degree of polarization (DOP). The effects of the polarization state of the incident light and of the size of scatterers on the propagation of DOP were studied. Results are shown in animation sequences.

© 2000 Optical Society of America

Full Article  |  PDF Article
Related Articles
Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media

Sebastian Bartel and Andreas H. Hielscher
Appl. Opt. 39(10) 1580-1588 (2000)

Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations

H. Hatcher Tynes, George W. Kattawar, Eleonora P. Zege, Iosif L. Katsev, Alexander S. Prikhach, and Ludmila I. Chaikovskaya
Appl. Opt. 40(3) 400-412 (2001)

Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation

Bernard Kaplan, Guy Ledanois, and Bernard Drévillon
Appl. Opt. 40(16) 2769-2777 (2001)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Topics in Optics and Photonics Series (Optical Society of America, Washington, D. C., 1996).
  2. B. Das, K. Yoo, and R. R. Alfano, “Ultrafast time gated imaging,” Opt. Lett. 18, 1092–1094(1993).
    [Crossref] [PubMed]
  3. S. Marengo, C. Pepin, T. Goulet, and D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quant. 5, 895–901(1999).
    [Crossref]
  4. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546(1992).
    [Crossref] [PubMed]
  5. S. P. Morgan, M. P. Khong, and M. G. Somekh, “Effects of polarization state and scatterer concentration on optical imaging through scattering media,” Appl. Opt. 36, 1560–1565(1997).
    [Crossref] [PubMed]
  6. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129(2000).
    [Crossref]
  7. X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved polarization shadowgrams in turbid media,” Appl. Opt. 36, 2984–2989(1997).
    [Crossref] [PubMed]
  8. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phy. Rev. E 49, 1767–1770(1994).
    [Crossref]
  9. V. Sankaran, K. Schonenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagation light in turbid media,” Appl. Opt. 38, 4252–4261(1999).
    [Crossref]
  10. M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiments,” Appl. Opt. 38, 3399–3408(1999).
    [Crossref]
  11. S. Bartel and A. H. Hielscher, “Monte Carlo simulation of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588(2000).
    [Crossref]
  12. G. Yao and L. V. Wang, “Two dimensional depth resolved Mueller matrix measurement in biological tissue with optical coherence tomography,” Opt. Lett. 24, 537–539(1999).
    [Crossref]
  13. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

2000 (2)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129(2000).
[Crossref]

S. Bartel and A. H. Hielscher, “Monte Carlo simulation of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580–1588(2000).
[Crossref]

1999 (4)

1997 (2)

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phy. Rev. E 49, 1767–1770(1994).
[Crossref]

1993 (1)

1992 (1)

Alfano, R. R.

Bartel, S.

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phy. Rev. E 49, 1767–1770(1994).
[Crossref]

Bonner, R. F.

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phy. Rev. E 49, 1767–1770(1994).
[Crossref]

Cameron, B. D.

Coté, G. L.

Das, B.

Gandjbakhche, A. H.

Goulet, T.

S. Marengo, C. Pepin, T. Goulet, and D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quant. 5, 895–901(1999).
[Crossref]

Hielscher, A. H.

Ho, P. P.

Houde, D.

S. Marengo, C. Pepin, T. Goulet, and D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quant. 5, 895–901(1999).
[Crossref]

Jacques, S. L.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129(2000).
[Crossref]

Kattawar, G. W.

Khong, M. P.

Lee, K.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129(2000).
[Crossref]

Liang, X.

Maitland, D. J.

Marengo, S.

S. Marengo, C. Pepin, T. Goulet, and D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quant. 5, 895–901(1999).
[Crossref]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phy. Rev. E 49, 1767–1770(1994).
[Crossref]

Mehrubeoglu, M.

Morgan, S. P.

Pepin, C.

S. Marengo, C. Pepin, T. Goulet, and D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quant. 5, 895–901(1999).
[Crossref]

Rakovic, M. J.

Rastegar, S.

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129(2000).
[Crossref]

Sankaran, V.

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phy. Rev. E 49, 1767–1770(1994).
[Crossref]

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546(1992).
[Crossref] [PubMed]

Schonenberger, K.

Somekh, M. G.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Walsh, J. T.

Wang, L.

Wang, L. V.

Yao, G.

Yoo, K.

Appl. Opt. (6)

IEEE J. Sel. Top. Quant. (1)

S. Marengo, C. Pepin, T. Goulet, and D. Houde, “Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier,” IEEE J. Sel. Top. Quant. 5, 895–901(1999).
[Crossref]

Lasers in Surg. & Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129(2000).
[Crossref]

Opt. Lett. (2)

Phy. Rev. E (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phy. Rev. E 49, 1767–1770(1994).
[Crossref]

Other (2)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

R. R. Alfano and J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Topics in Optics and Photonics Series (Optical Society of America, Washington, D. C., 1996).

Supplementary Material (5)

» Media 1: MOV (784 KB)     
» Media 2: MOV (948 KB)     
» Media 3: MOV (948 KB)     
» Media 4: MOV (784 KB)     
» Media 5: MOV (948 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The laboratory coordinate system for the simulation.

Fig. 2.
Fig. 2.

(a) Reflection and (b) transmission Mueller matrices of a slab of turbid medium.

Fig.3.
Fig.3.

(787 KB) Movie of the DOP propagation in the slab. The X axis is along the horizontal direction, and the Z axis is along the vertical direction. R: right-circularly polarized incident light. H: horizontal-linearly polarized incident light.

Fig. 4.
Fig. 4.

(950 KB) Movie of the DOP of the transmitted light with (a) R- and (b) H-polarized incident light. The X axis is along the horizontal direction, and the Y axis is along the vertical direction.

Fig.5.
Fig.5.

(950 KB) Movie of the weighted-averaged numbers of scattering events for (a) R- and (b) H-polarized incident light. The numbers of scattering events are normalized to a maximum value of 7 for the plots. The X axis is along the horizontal direction, and the Y axis is along the vertical direction.

Fig.6.
Fig.6.

(787 KB) Movie of the DOP propagation in the slab. The X axis is along the horizontal direction, and the Z axis is along the vertical direction. R: right-circularly polarized incident light. H: horizontal-linearly polarized incident light.

Fig. 7.
Fig. 7.

(950 KB) Movie of the DOP of the transmitted light with (a) R- and (b) H-polarized incident light. The X axis is along the horizontal direction, and the Y axis is along the vertical direction.

Fig. 8.
Fig. 8.

Probability density function ρ(θ) and |m 12/m 11| at a particle radius of (a) 0.051 µm and (b) 1.02 µm.

Fig. 9.
Fig. 9.

Radial distribution of the DOP of the transmitted light for different scattering coefficients. The particle radius was 1.02 µm. The incident light was H polarized.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S = M ( θ ) S ,
M ( θ ) = [ m 11 m 12 0 0 m 12 m 11 0 0 0 0 m 33 m 34 0 0 m 34 m 33 ] .
2 π 0 π m 11 ( θ ) sin ( θ ) d θ = 1 .
ρ ( θ , ϕ ) = m 11 ( θ ) + m 12 ( θ ) [ S 1 cos ( 2 ϕ ) + S 2 sin ( 2 ϕ ) ] S 0 .
ρ θ ( ϕ ) = 1 + m 12 ( θ ) m 11 ( θ ) [ S 1 cos ( 2 ϕ ) + S 2 sin ( 2 ϕ ) ] S 0 .
DOP = S 1 2 + S 2 2 + S 3 2 S 0 .

Metrics