Abstract

A femtosecond pulse characterization technique is developed using frequency-resolved optical gating based on the two-photon absorption in an InP crystal. The technique provides direct visual monitoring of pulse frequency chirping in the time-spectral domain for femtosecond pulses with a pulse energy as low as 3.8 pJ. Pulse chirping and pedestal wings of 10-GHz optical fiber solitons are characterized experimentally for the first time by this technique.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for three common beam geometries

K. W. DeLong, Rick Trebino, and Daniel J. Kane
J. Opt. Soc. Am. B 11(9) 1595-1608 (1994)

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
    [Crossref]
  2. J. M. Dudley, L. P. Barry, P. G. Bolland, J. D. Harvey, R. Leonhardt, and P. D. Drummond, “Direct measurement of pulse distortion near the zero-dispersion wavelength in an optical fiber by frequency-resolved optical gating,” Opt. Lett. 22, 457–459 (1997).
    [Crossref] [PubMed]
  3. S. Linden, H. Giessen, and J. Kuhl, “XFROG — a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. (b)  206, 119–124 (1998).
    [Crossref]
  4. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE. J. Quantum Electron. 27, 1296–1309 (1991).
    [Crossref]
  5. Y. R. Shen, The principles of nonlinear optics (Wiley, New York, 1984) Chap. 12.
  6. H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
    [Crossref]
  7. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compression in 1.3–1.6 µm region,” IEEE. J. Quantum Electron. QE-23, 59–64 (1987).
    [Crossref]
  8. M. D. Pelusi, Y. Matsui, and A. Suzuki, “Frequency tunable femtosecond pulse generation from an electroabsorption modulator by enhanced higher order soliton compression in dispersion decreasing fiber,” Electron. Lett. 35, 734–736, (1999).
    [Crossref]

1999 (1)

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Frequency tunable femtosecond pulse generation from an electroabsorption modulator by enhanced higher order soliton compression in dispersion decreasing fiber,” Electron. Lett. 35, 734–736, (1999).
[Crossref]

1998 (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG — a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. (b)  206, 119–124 (1998).
[Crossref]

1997 (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
[Crossref]

J. M. Dudley, L. P. Barry, P. G. Bolland, J. D. Harvey, R. Leonhardt, and P. D. Drummond, “Direct measurement of pulse distortion near the zero-dispersion wavelength in an optical fiber by frequency-resolved optical gating,” Opt. Lett. 22, 457–459 (1997).
[Crossref] [PubMed]

1993 (1)

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE. J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

1987 (1)

E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compression in 1.3–1.6 µm region,” IEEE. J. Quantum Electron. QE-23, 59–64 (1987).
[Crossref]

Barry, L. P.

Bolland, P. G.

Day, I. E.

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
[Crossref]

Drummond, P. D.

Dudley, J. M.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
[Crossref]

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, “XFROG — a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. (b)  206, 119–124 (1998).
[Crossref]

Grant, R. S.

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE. J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Harvey, J. D.

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE. J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
[Crossref]

Kennedy, G. T.

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
[Crossref]

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, “XFROG — a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. (b)  206, 119–124 (1998).
[Crossref]

Leonhardt, R.

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, “XFROG — a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. (b)  206, 119–124 (1998).
[Crossref]

Martinez, E.

E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compression in 1.3–1.6 µm region,” IEEE. J. Quantum Electron. QE-23, 59–64 (1987).
[Crossref]

Matsui, Y.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Frequency tunable femtosecond pulse generation from an electroabsorption modulator by enhanced higher order soliton compression in dispersion decreasing fiber,” Electron. Lett. 35, 734–736, (1999).
[Crossref]

Pelusi, M. D.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Frequency tunable femtosecond pulse generation from an electroabsorption modulator by enhanced higher order soliton compression in dispersion decreasing fiber,” Electron. Lett. 35, 734–736, (1999).
[Crossref]

Penty, R. V.

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE. J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Shen, Y. R.

Y. R. Shen, The principles of nonlinear optics (Wiley, New York, 1984) Chap. 12.

Sibbet, W.

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

Snow, P. A.

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

Su, Z.

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

Suzuki, A.

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Frequency tunable femtosecond pulse generation from an electroabsorption modulator by enhanced higher order soliton compression in dispersion decreasing fiber,” Electron. Lett. 35, 734–736, (1999).
[Crossref]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
[Crossref]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
[Crossref]

Tsang, H. K.

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE. J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

White, I. H.

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

Appl. Phys. Lett. (1)

H. K. Tsang, P. A. Snow, I. E. Day, I. H. White, R. V. Penty, R. S. Grant, Z. Su, G. T. Kennedy, and W. Sibbet, “All-optical modulation with ultrafast recovery at low pump energies in passive InGaAs/InGaAsP multiquantum well waveguides,” Appl. Phys. Lett. 62, 1451–1453 (1993).
[Crossref]

Electron. Lett. (1)

M. D. Pelusi, Y. Matsui, and A. Suzuki, “Frequency tunable femtosecond pulse generation from an electroabsorption modulator by enhanced higher order soliton compression in dispersion decreasing fiber,” Electron. Lett. 35, 734–736, (1999).
[Crossref]

IEEE. J. Quantum Electron. (2)

E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compression in 1.3–1.6 µm region,” IEEE. J. Quantum Electron. QE-23, 59–64 (1987).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE. J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Opt. Lett. (1)

Phys. Stat. Sol. (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG — a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. (b)  206, 119–124 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68,3277–3295 (1997).
[Crossref]

Other (1)

Y. R. Shen, The principles of nonlinear optics (Wiley, New York, 1984) Chap. 12.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Apparatus for TPA autocorrelation and spectrogram measurements.

Fig. 2.
Fig. 2.

Left: TPA autocorrelation traces with different incident pulse energies. Right: pulse energy dependence of the TPA peak intensity from the autocorrelation traces (red dots) and a theoretical curve in the weak absorption limit (blue curve).

Fig. 3.
Fig. 3.

TPA autocorrelation trace for transform-limit OPO pulses with gate and probe pulse energies of 100 and 1 pJ, respectively.

Fig. 4.
Fig. 4.

TPA pulse intensity spectrograms for OPO pulses with a negative, zero and a positive group delay dispersion.

Fig. 5.
Fig. 5.

Pulse intensity (red dots) and phase shift (blue dots) data retrieved from the TPA spectrograms for the OPO pulses in Fig. 4.

Fig. 6.
Fig. 6.

Time-integrated spectrum (left) and TPA pulse intensity spectrogram (right) of 10-GHz optical fiber soliton pulses. Inset: a set-up for the soliton pulse generation.

Fig. 7.
Fig. 7.

The retrieved and theoretical intensity (red dots) and phase of the soliton pulses (blue dots). Inset: theoretical intensity of the pulses in a magnified scale.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( d ) = I 0 ( 1 + I 0 β d ) .
Δ I ( d ) = ( 4 W pulse π D 2 τ pulse ) 2 β d ,
S TPA ( ω , τ ) = + d t E ( t ) E ( t τ ) 2 e i ω t 2 ,

Metrics