Abstract

The use of pulsed lasers for microprocessing material in several manufacturing industries is presented. Microvia, ink jet printer nozzle and biomedical catheter hole drilling, thin-film scribing and micro-electro-mechanical system (MEMS) fabrication applications are reviewed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen“Laser-material interactions, fundamentals and applications,” in Laser Ablation: Mechanisms and Applications II, AIP Conf. Proc. J. C. Miller and D. B. Geohegan eds.,  288 (1994).
  2. J. C. Miller, ‘History, scope and the future of laser ablation’, in Laser Ablation, Principles and Applications, J. C. Miller ed., Springer-Verlag (1994).
  3. Y. Kawamura, K. Toyoda, and S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374 (1982).
    [CrossRef]
  4. R. Srinivasan and V. Mayne-Banton, “Self-developing photoetching of poly(ethylene terephthalate) films by far ultraviolet excimer laser radiation,” Appl. Phys. Lett. 41, 576 (1982).
    [CrossRef]
  5. S. D. Allen, M. Bass, and M. L. Teisniger, “Comparison of pulsed Nd:YAG and pulsed CO2 lasers for hole drilling in printed circuit board materials,” CLEO Conference Summary (1982).
  6. M. N. Watson, “Laser drilling of printed circuit boards,” Circuit World,  11, 13 (1984).
    [CrossRef]
  7. F. Bachman, “Excimer lasers in a fabrication line for a highly integrated printed circuit board,” Chemtronics 4, 149 (1989).
  8. J. R. Lankard and G. E. Wolbold, “Laser ablation of polyimide in a manufacturing facility,” Appl. Phys. A54, 355 (1992).
  9. R. S. Patel, T. F. Redmond, C. Tessler, D. Tudryn, and D. Pulaski, “Via production benefits from excimer laser tools,” Laser Focus World (Jan 1996).
  10. H. Holden, “Microvia PCB’s:the next generation of substrates & packages,” Future Circuits International 1, 71 (1997).
  11. C. Rowan, “Excimer lasers drill precise holes with higher yields,” Laser Focus World (Aug 1995).
  12. A. South, “Miniaturization of Medical Products: The Development Challenge,” Medical Device Technology 9, 30 (1998).
    [PubMed]
  13. M. C. Gower“Excimer lasers for surgery and biomedical fabrication,” in Nanotechnology in Medicine and the Biosciences, R R H Coombs and D W Robinson eds, Gordon & Breach (1996).
  14. R. S. Gifford and D J Bartnik. “Using optical sensors to measure arterial blood gases,” Opt. & Photonics News 9, 27 (Mar 1998).
    [CrossRef]
  15. S. Kiyama, T. Matsuoka, Y. Hirano, S. Nakano, M. Osumi, and Y. Kuwano, “Laser patterning of integrated-type a-Si solar cell submodules,” JSPE,  11, 2069, (1990).
  16. A. B. Frazier, R. O. Warrington, and C. Friedrich, “The Miniaturization Technologies: Past, Present and Future,” IEEE Trans. on Industrial Electronics,  42, No5, 423 (1995).
    [CrossRef]
  17. E. C. Harvey and P. T. Rumsby, ‘Fabrication techniques and their application to produce novel micromachined structures and devices using excimer laser mask projection’ in Micromachining and microfabrication process technology III, Proc. SPIE3223, 26 (1997).
  18. R. Pethig, J. P. H. Burt, A. Parton, N. H. Rizvi, M. S. Talary, and J. A. Tame, ‘Development of biofactory on a chip technology using excimer laser micromachining’ J. Micromech. Microeng. 8, 57 (1999).
    [CrossRef]
  19. W. Bacher, W. Menz, and J. Mohr, “The LIGA Technique and its potential for Microsystems - A Survey”, IEEE Trans. on Industrial Electronics,  42, No5, 431 (1995).
    [CrossRef]
  20. P. McKeown, ‘Nanotechnology’ in Emerging Technology Series: New and Advanced Materials, UN Industrial Development Organization 1 (1997).

1999 (1)

R. Pethig, J. P. H. Burt, A. Parton, N. H. Rizvi, M. S. Talary, and J. A. Tame, ‘Development of biofactory on a chip technology using excimer laser micromachining’ J. Micromech. Microeng. 8, 57 (1999).
[CrossRef]

1998 (2)

A. South, “Miniaturization of Medical Products: The Development Challenge,” Medical Device Technology 9, 30 (1998).
[PubMed]

R. S. Gifford and D J Bartnik. “Using optical sensors to measure arterial blood gases,” Opt. & Photonics News 9, 27 (Mar 1998).
[CrossRef]

1997 (1)

H. Holden, “Microvia PCB’s:the next generation of substrates & packages,” Future Circuits International 1, 71 (1997).

1995 (2)

W. Bacher, W. Menz, and J. Mohr, “The LIGA Technique and its potential for Microsystems - A Survey”, IEEE Trans. on Industrial Electronics,  42, No5, 431 (1995).
[CrossRef]

A. B. Frazier, R. O. Warrington, and C. Friedrich, “The Miniaturization Technologies: Past, Present and Future,” IEEE Trans. on Industrial Electronics,  42, No5, 423 (1995).
[CrossRef]

1994 (1)

N. Bloembergen“Laser-material interactions, fundamentals and applications,” in Laser Ablation: Mechanisms and Applications II, AIP Conf. Proc. J. C. Miller and D. B. Geohegan eds.,  288 (1994).

1992 (1)

J. R. Lankard and G. E. Wolbold, “Laser ablation of polyimide in a manufacturing facility,” Appl. Phys. A54, 355 (1992).

1990 (1)

S. Kiyama, T. Matsuoka, Y. Hirano, S. Nakano, M. Osumi, and Y. Kuwano, “Laser patterning of integrated-type a-Si solar cell submodules,” JSPE,  11, 2069, (1990).

1989 (1)

F. Bachman, “Excimer lasers in a fabrication line for a highly integrated printed circuit board,” Chemtronics 4, 149 (1989).

1984 (1)

M. N. Watson, “Laser drilling of printed circuit boards,” Circuit World,  11, 13 (1984).
[CrossRef]

1982 (2)

Y. Kawamura, K. Toyoda, and S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374 (1982).
[CrossRef]

R. Srinivasan and V. Mayne-Banton, “Self-developing photoetching of poly(ethylene terephthalate) films by far ultraviolet excimer laser radiation,” Appl. Phys. Lett. 41, 576 (1982).
[CrossRef]

Allen, S. D.

S. D. Allen, M. Bass, and M. L. Teisniger, “Comparison of pulsed Nd:YAG and pulsed CO2 lasers for hole drilling in printed circuit board materials,” CLEO Conference Summary (1982).

Bacher, W.

W. Bacher, W. Menz, and J. Mohr, “The LIGA Technique and its potential for Microsystems - A Survey”, IEEE Trans. on Industrial Electronics,  42, No5, 431 (1995).
[CrossRef]

Bachman, F.

F. Bachman, “Excimer lasers in a fabrication line for a highly integrated printed circuit board,” Chemtronics 4, 149 (1989).

Bartnik, D J

R. S. Gifford and D J Bartnik. “Using optical sensors to measure arterial blood gases,” Opt. & Photonics News 9, 27 (Mar 1998).
[CrossRef]

Bass, M.

S. D. Allen, M. Bass, and M. L. Teisniger, “Comparison of pulsed Nd:YAG and pulsed CO2 lasers for hole drilling in printed circuit board materials,” CLEO Conference Summary (1982).

Bloembergen, N.

N. Bloembergen“Laser-material interactions, fundamentals and applications,” in Laser Ablation: Mechanisms and Applications II, AIP Conf. Proc. J. C. Miller and D. B. Geohegan eds.,  288 (1994).

Burt, J. P. H.

R. Pethig, J. P. H. Burt, A. Parton, N. H. Rizvi, M. S. Talary, and J. A. Tame, ‘Development of biofactory on a chip technology using excimer laser micromachining’ J. Micromech. Microeng. 8, 57 (1999).
[CrossRef]

Frazier, A. B.

A. B. Frazier, R. O. Warrington, and C. Friedrich, “The Miniaturization Technologies: Past, Present and Future,” IEEE Trans. on Industrial Electronics,  42, No5, 423 (1995).
[CrossRef]

Friedrich, C.

A. B. Frazier, R. O. Warrington, and C. Friedrich, “The Miniaturization Technologies: Past, Present and Future,” IEEE Trans. on Industrial Electronics,  42, No5, 423 (1995).
[CrossRef]

Gifford, R. S.

R. S. Gifford and D J Bartnik. “Using optical sensors to measure arterial blood gases,” Opt. & Photonics News 9, 27 (Mar 1998).
[CrossRef]

Gower, M. C.

M. C. Gower“Excimer lasers for surgery and biomedical fabrication,” in Nanotechnology in Medicine and the Biosciences, R R H Coombs and D W Robinson eds, Gordon & Breach (1996).

Harvey, E. C.

E. C. Harvey and P. T. Rumsby, ‘Fabrication techniques and their application to produce novel micromachined structures and devices using excimer laser mask projection’ in Micromachining and microfabrication process technology III, Proc. SPIE3223, 26 (1997).

Hirano, Y.

S. Kiyama, T. Matsuoka, Y. Hirano, S. Nakano, M. Osumi, and Y. Kuwano, “Laser patterning of integrated-type a-Si solar cell submodules,” JSPE,  11, 2069, (1990).

Holden, H.

H. Holden, “Microvia PCB’s:the next generation of substrates & packages,” Future Circuits International 1, 71 (1997).

Kawamura, Y.

Y. Kawamura, K. Toyoda, and S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374 (1982).
[CrossRef]

Kiyama, S.

S. Kiyama, T. Matsuoka, Y. Hirano, S. Nakano, M. Osumi, and Y. Kuwano, “Laser patterning of integrated-type a-Si solar cell submodules,” JSPE,  11, 2069, (1990).

Kuwano, Y.

S. Kiyama, T. Matsuoka, Y. Hirano, S. Nakano, M. Osumi, and Y. Kuwano, “Laser patterning of integrated-type a-Si solar cell submodules,” JSPE,  11, 2069, (1990).

Lankard, J. R.

J. R. Lankard and G. E. Wolbold, “Laser ablation of polyimide in a manufacturing facility,” Appl. Phys. A54, 355 (1992).

Matsuoka, T.

S. Kiyama, T. Matsuoka, Y. Hirano, S. Nakano, M. Osumi, and Y. Kuwano, “Laser patterning of integrated-type a-Si solar cell submodules,” JSPE,  11, 2069, (1990).

Mayne-Banton, V.

R. Srinivasan and V. Mayne-Banton, “Self-developing photoetching of poly(ethylene terephthalate) films by far ultraviolet excimer laser radiation,” Appl. Phys. Lett. 41, 576 (1982).
[CrossRef]

McKeown, P.

P. McKeown, ‘Nanotechnology’ in Emerging Technology Series: New and Advanced Materials, UN Industrial Development Organization 1 (1997).

Menz, W.

W. Bacher, W. Menz, and J. Mohr, “The LIGA Technique and its potential for Microsystems - A Survey”, IEEE Trans. on Industrial Electronics,  42, No5, 431 (1995).
[CrossRef]

Miller, J. C.

J. C. Miller, ‘History, scope and the future of laser ablation’, in Laser Ablation, Principles and Applications, J. C. Miller ed., Springer-Verlag (1994).

Mohr, J.

W. Bacher, W. Menz, and J. Mohr, “The LIGA Technique and its potential for Microsystems - A Survey”, IEEE Trans. on Industrial Electronics,  42, No5, 431 (1995).
[CrossRef]

Nakano, S.

S. Kiyama, T. Matsuoka, Y. Hirano, S. Nakano, M. Osumi, and Y. Kuwano, “Laser patterning of integrated-type a-Si solar cell submodules,” JSPE,  11, 2069, (1990).

Namba, S.

Y. Kawamura, K. Toyoda, and S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374 (1982).
[CrossRef]

Osumi, M.

S. Kiyama, T. Matsuoka, Y. Hirano, S. Nakano, M. Osumi, and Y. Kuwano, “Laser patterning of integrated-type a-Si solar cell submodules,” JSPE,  11, 2069, (1990).

Parton, A.

R. Pethig, J. P. H. Burt, A. Parton, N. H. Rizvi, M. S. Talary, and J. A. Tame, ‘Development of biofactory on a chip technology using excimer laser micromachining’ J. Micromech. Microeng. 8, 57 (1999).
[CrossRef]

Patel, R. S.

R. S. Patel, T. F. Redmond, C. Tessler, D. Tudryn, and D. Pulaski, “Via production benefits from excimer laser tools,” Laser Focus World (Jan 1996).

Pethig, R.

R. Pethig, J. P. H. Burt, A. Parton, N. H. Rizvi, M. S. Talary, and J. A. Tame, ‘Development of biofactory on a chip technology using excimer laser micromachining’ J. Micromech. Microeng. 8, 57 (1999).
[CrossRef]

Pulaski, D.

R. S. Patel, T. F. Redmond, C. Tessler, D. Tudryn, and D. Pulaski, “Via production benefits from excimer laser tools,” Laser Focus World (Jan 1996).

Redmond, T. F.

R. S. Patel, T. F. Redmond, C. Tessler, D. Tudryn, and D. Pulaski, “Via production benefits from excimer laser tools,” Laser Focus World (Jan 1996).

Rizvi, N. H.

R. Pethig, J. P. H. Burt, A. Parton, N. H. Rizvi, M. S. Talary, and J. A. Tame, ‘Development of biofactory on a chip technology using excimer laser micromachining’ J. Micromech. Microeng. 8, 57 (1999).
[CrossRef]

Rowan, C.

C. Rowan, “Excimer lasers drill precise holes with higher yields,” Laser Focus World (Aug 1995).

Rumsby, P. T.

E. C. Harvey and P. T. Rumsby, ‘Fabrication techniques and their application to produce novel micromachined structures and devices using excimer laser mask projection’ in Micromachining and microfabrication process technology III, Proc. SPIE3223, 26 (1997).

South, A.

A. South, “Miniaturization of Medical Products: The Development Challenge,” Medical Device Technology 9, 30 (1998).
[PubMed]

Srinivasan, R.

R. Srinivasan and V. Mayne-Banton, “Self-developing photoetching of poly(ethylene terephthalate) films by far ultraviolet excimer laser radiation,” Appl. Phys. Lett. 41, 576 (1982).
[CrossRef]

Talary, M. S.

R. Pethig, J. P. H. Burt, A. Parton, N. H. Rizvi, M. S. Talary, and J. A. Tame, ‘Development of biofactory on a chip technology using excimer laser micromachining’ J. Micromech. Microeng. 8, 57 (1999).
[CrossRef]

Tame, J. A.

R. Pethig, J. P. H. Burt, A. Parton, N. H. Rizvi, M. S. Talary, and J. A. Tame, ‘Development of biofactory on a chip technology using excimer laser micromachining’ J. Micromech. Microeng. 8, 57 (1999).
[CrossRef]

Teisniger, M. L.

S. D. Allen, M. Bass, and M. L. Teisniger, “Comparison of pulsed Nd:YAG and pulsed CO2 lasers for hole drilling in printed circuit board materials,” CLEO Conference Summary (1982).

Tessler, C.

R. S. Patel, T. F. Redmond, C. Tessler, D. Tudryn, and D. Pulaski, “Via production benefits from excimer laser tools,” Laser Focus World (Jan 1996).

Toyoda, K.

Y. Kawamura, K. Toyoda, and S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374 (1982).
[CrossRef]

Tudryn, D.

R. S. Patel, T. F. Redmond, C. Tessler, D. Tudryn, and D. Pulaski, “Via production benefits from excimer laser tools,” Laser Focus World (Jan 1996).

Warrington, R. O.

A. B. Frazier, R. O. Warrington, and C. Friedrich, “The Miniaturization Technologies: Past, Present and Future,” IEEE Trans. on Industrial Electronics,  42, No5, 423 (1995).
[CrossRef]

Watson, M. N.

M. N. Watson, “Laser drilling of printed circuit boards,” Circuit World,  11, 13 (1984).
[CrossRef]

Wolbold, G. E.

J. R. Lankard and G. E. Wolbold, “Laser ablation of polyimide in a manufacturing facility,” Appl. Phys. A54, 355 (1992).

Appl. Phys. (1)

J. R. Lankard and G. E. Wolbold, “Laser ablation of polyimide in a manufacturing facility,” Appl. Phys. A54, 355 (1992).

Appl. Phys. Lett. (2)

Y. Kawamura, K. Toyoda, and S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser,” Appl. Phys. Lett. 40, 374 (1982).
[CrossRef]

R. Srinivasan and V. Mayne-Banton, “Self-developing photoetching of poly(ethylene terephthalate) films by far ultraviolet excimer laser radiation,” Appl. Phys. Lett. 41, 576 (1982).
[CrossRef]

Chemtronics (1)

F. Bachman, “Excimer lasers in a fabrication line for a highly integrated printed circuit board,” Chemtronics 4, 149 (1989).

Circuit World (1)

M. N. Watson, “Laser drilling of printed circuit boards,” Circuit World,  11, 13 (1984).
[CrossRef]

Future Circuits International (1)

H. Holden, “Microvia PCB’s:the next generation of substrates & packages,” Future Circuits International 1, 71 (1997).

IEEE Trans. on Industrial Electronics (2)

A. B. Frazier, R. O. Warrington, and C. Friedrich, “The Miniaturization Technologies: Past, Present and Future,” IEEE Trans. on Industrial Electronics,  42, No5, 423 (1995).
[CrossRef]

W. Bacher, W. Menz, and J. Mohr, “The LIGA Technique and its potential for Microsystems - A Survey”, IEEE Trans. on Industrial Electronics,  42, No5, 431 (1995).
[CrossRef]

in Laser Ablation: Mechanisms and Applications II (1)

N. Bloembergen“Laser-material interactions, fundamentals and applications,” in Laser Ablation: Mechanisms and Applications II, AIP Conf. Proc. J. C. Miller and D. B. Geohegan eds.,  288 (1994).

J. Micromech. Microeng. (1)

R. Pethig, J. P. H. Burt, A. Parton, N. H. Rizvi, M. S. Talary, and J. A. Tame, ‘Development of biofactory on a chip technology using excimer laser micromachining’ J. Micromech. Microeng. 8, 57 (1999).
[CrossRef]

JSPE (1)

S. Kiyama, T. Matsuoka, Y. Hirano, S. Nakano, M. Osumi, and Y. Kuwano, “Laser patterning of integrated-type a-Si solar cell submodules,” JSPE,  11, 2069, (1990).

Medical Device Technology (1)

A. South, “Miniaturization of Medical Products: The Development Challenge,” Medical Device Technology 9, 30 (1998).
[PubMed]

Opt. & Photonics News (1)

R. S. Gifford and D J Bartnik. “Using optical sensors to measure arterial blood gases,” Opt. & Photonics News 9, 27 (Mar 1998).
[CrossRef]

Other (7)

E. C. Harvey and P. T. Rumsby, ‘Fabrication techniques and their application to produce novel micromachined structures and devices using excimer laser mask projection’ in Micromachining and microfabrication process technology III, Proc. SPIE3223, 26 (1997).

M. C. Gower“Excimer lasers for surgery and biomedical fabrication,” in Nanotechnology in Medicine and the Biosciences, R R H Coombs and D W Robinson eds, Gordon & Breach (1996).

C. Rowan, “Excimer lasers drill precise holes with higher yields,” Laser Focus World (Aug 1995).

J. C. Miller, ‘History, scope and the future of laser ablation’, in Laser Ablation, Principles and Applications, J. C. Miller ed., Springer-Verlag (1994).

S. D. Allen, M. Bass, and M. L. Teisniger, “Comparison of pulsed Nd:YAG and pulsed CO2 lasers for hole drilling in printed circuit board materials,” CLEO Conference Summary (1982).

R. S. Patel, T. F. Redmond, C. Tessler, D. Tudryn, and D. Pulaski, “Via production benefits from excimer laser tools,” Laser Focus World (Jan 1996).

P. McKeown, ‘Nanotechnology’ in Emerging Technology Series: New and Advanced Materials, UN Industrial Development Organization 1 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

100mm holes drilled in 75mm high-density polyethylene with (a) a twist drill bit (b) a KrF laser

Fig.2.
Fig.2.

100µm diameter blind microvia drilled in a PCB. (a) Step 1. Nd laser trepanned hole in top copper conductive layer. (b) Step 2. CO2 laser drilling of fiber reinforced composite FR4 layer to copper below.

Fig. 3.
Fig. 3.

Nd:YAG & CO2 hybrid laser tool for microvia drilling.

Fig. 4.
Fig. 4.

(a) Array of 30µm diameter ink jet printer nozzles drilled in polyimide. (b) Array of nonlinear tapered nozzles aiding laminar fluid flow

Fig. 5.
Fig. 5.

(a) Tapered nozzle with rifling. (b) Nozzle array with machined reservoirs

Fig. 6.
Fig. 6.

(a). Hole in the side of a bilumen catheter (b) Automated reel-to-reel excimer laser workstation for simultaneous hole drilling in optical fibers.

Figure 7.
Figure 7.

(a) Rectangular 50×20µm holes drilled in 100µm fibers for PaO2 & PaCO2-sensors. (b) Laser stripped insulation from 100µm diameter pH-sensor wire

Figure 8.
Figure 8.

Laser scribing of thin films on solar panels and completed TFS panel

Figure 9.
Figure 9.

(a) 25mm wide tracks in ITO layer. (b) Nd pulsed laser panel scribing machine

Figure 10.
Figure 10.

KrF laser produced surfaces in polycarbonate produced using mask-dragging techniques.

Figure 11.
Figure 11.

Micro-optical surfaces fabricated by KrF laser micromachining and orthogonal mask-dragging

Figure 12.
Figure 12.

Biochip manufactured using laser micromachining.

Figure 13.
Figure 13.

KrF laser micromachined microfluidic channels in polyester

Figure 14.
Figure 14.

KrF laser micromachined fiber holders in polyester

Figure 15.
Figure 15.

KrF laser-machined 3D-structures in polycarbonate.

Figure 16.
Figure 16.

MEMS devices fabricated by excimer laser micromachining

Metrics