Abstract

Possibilities to produce sub-diffraction limited structures in thin metal films and bulk dielectric materials using femtosecond laser pulses are investigated. The physics of ultrashort pulse laser ablation of solids is outlined. Results on the fabrication of sub-micrometer structures in 100–200 nm chrome-coated surfaces by direct ablative writing are reported. Polarization maintaining optical waveguides produced by femtosecond laser pulses inside crystalline quartz are demonstrated.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
    [CrossRef]
  2. C. Momma, B.N. Chichkov, S.Nolte, F. von Alvensleben, A. Tunnermann and H. Welling, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996); B.N. Chichko , C. Momma, S.Nolte, F. von Alvensleben and A.Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
    [CrossRef]
  3. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, and M.D. Perry, "Optical ablation by high-power short-pulse lasers," J. Opt. Soc. Am. B 13, 459-468 (1996).
    [CrossRef]
  4. W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, "Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps," Appl. Phys. Lett. 69, 3146-3148 (1996).
    [CrossRef]
  5. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichko , B. Wellegehausen, and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
    [CrossRef]
  6. see Laser Ablation, Proceedings of the 5th International Conference, Eds. J.S. Horwitz, H.-U. Krebs, K. Murakami, and M. Stuke, in Appl. Phys. A 69 [Suppl], 1999.
  7. S. Nolte, B.N. Chichko , H. Welling, Y. Shani, K. Lieberman, and H. Terkel, "Nanostructuring with spatiall localized femtosecond laser pulses," Opt. Lett. 24, 914-916 (1999).
    [CrossRef]
  8. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College Publishing, New York, 1976).
  9. A.A. Abrikoso , Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988).
  10. A.P. Kanavin, I.V. Smetanin, V.A. Isakov, Yu.V. Afanasiev, B.N. Chichko , B. Wellegehausen, S. Nolte, C. Momma, and A. Tünnermann, "Heat transport in metals irradiated by ultrashort laser pulses," Phys. Rev. B 57, 14698-14703 (1998).
    [CrossRef]
  11. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, "Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation," Appl. Phys. A 69, S373-S376 (1999).
    [CrossRef]
  12. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses," Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  13. C.B. Schaffer, A. Brodeur, J.F. Garcia, W.A. Leight, and E. Mazur, "Micromachining optical waveguides in bulk glass using a femtosecond laser oscillator," http://mazur-www.harvard.edu/Library/Publications/pdf files/Pub 262.pdf

Other (13)

P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

C. Momma, B.N. Chichkov, S.Nolte, F. von Alvensleben, A. Tunnermann and H. Welling, "Short-pulse laser ablation of solid targets," Opt. Commun. 129, 134-142 (1996); B.N. Chichko , C. Momma, S.Nolte, F. von Alvensleben and A.Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, and M.D. Perry, "Optical ablation by high-power short-pulse lasers," J. Opt. Soc. Am. B 13, 459-468 (1996).
[CrossRef]

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, "Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps," Appl. Phys. Lett. 69, 3146-3148 (1996).
[CrossRef]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichko , B. Wellegehausen, and H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
[CrossRef]

see Laser Ablation, Proceedings of the 5th International Conference, Eds. J.S. Horwitz, H.-U. Krebs, K. Murakami, and M. Stuke, in Appl. Phys. A 69 [Suppl], 1999.

S. Nolte, B.N. Chichko , H. Welling, Y. Shani, K. Lieberman, and H. Terkel, "Nanostructuring with spatiall localized femtosecond laser pulses," Opt. Lett. 24, 914-916 (1999).
[CrossRef]

N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College Publishing, New York, 1976).

A.A. Abrikoso , Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988).

A.P. Kanavin, I.V. Smetanin, V.A. Isakov, Yu.V. Afanasiev, B.N. Chichko , B. Wellegehausen, S. Nolte, C. Momma, and A. Tünnermann, "Heat transport in metals irradiated by ultrashort laser pulses," Phys. Rev. B 57, 14698-14703 (1998).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, "Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation," Appl. Phys. A 69, S373-S376 (1999).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

C.B. Schaffer, A. Brodeur, J.F. Garcia, W.A. Leight, and E. Mazur, "Micromachining optical waveguides in bulk glass using a femtosecond laser oscillator," http://mazur-www.harvard.edu/Library/Publications/pdf files/Pub 262.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Electron acceleration grid for a streak camera fabricated in a 4-µm-thick Ni film.

Fig. 2.
Fig. 2.

Schematic of femtosecond laser ablation and electron heat transport in dielectric (left) and metal (right) targets.

Fig. 3.
Fig. 3.

Schematic setup used for sub-diffraction limited microstructuring.

Fig. 4.
Fig. 4.

SEM photographs of damage (left) and a sub-micrometer hole (right) produced after 1,000 laser shots with a pulse energy of 2.5 nJ and 3 nJ, respectively. Schematic distributions of the laser fluence and corresponding melting and ablation thresholds are shown below.

Fig. 5.
Fig. 5.

SEM photographs of holes produced with different pulse energies after 1,000 shots.

Fig. 6.
Fig. 6.

Structures produced with 5-nJ laser pulses and different numbers of shots.

Fig. 7.
Fig. 7.

Microstructures produced with two laser pulses.

Fig. 8.
Fig. 8.

Schematic setup used for the microfabricaton of optical waveguides in transparent media.

Fig. 9.
Fig. 9.

Top view polarization contrast microscope image (left) of waveguides produced in crystalline quartz (spacing between the waveguides is 0.5 mm). In the right picture a cross section of one of the waveguides (polarization contrast microscope image) is shown.

Fig. 10.
Fig. 10.

Near-field distributions of guided radiation at 514 nm. Different modes are guided.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C e dT e dt = Q ( x ) x γ ( T e T i ) + S P e u x ,
C i dT i dt = γ ( T e T i ) ( P i + P c ) u x ,
ρ du dt = x ( P c + P e + P i ) ,
ρ t + ρ ( u ) x = 0 ,

Metrics