Abstract

We have demonstrated a scanned beam deflection technique, and applied this technique to imaging the free stream of a dc arcjet plasma plume. An acousto-optic deflector sweeps a HeNe beam transverse to the jet flow direction. A transform lens and split photodiode measure angular beam deflections produced by refractive index gradients in the arcjet plume. Line scans of beam deflection angle are collected at a 1 kHz sweep rate. Assuming axial symmetry, tomographic reconstruction is used convert the beam deflection data to refractive index. Multiple one-dimensional scans are stacked to produce two-dimensional refractive index images. Index of refraction is directly related to density for measurements in pure argon. Good images are obtained at chamber pressures as low as 4 Torr.

Measurements were performed using both pure argon and argon/ hydrogen/methane mixtures in the arcjet reactor at a variety of reactor chamber pressures including conditions for diamond deposition. We found significant differences in the radial transport with chamber pressure and with feedstock composition. Comparison of index of refraction data with photographs of arcjet optical emission shows that the emission is not a good representation of the jet density. The simplicity and sensitivity of the scanned beam deflection technique may allow its use for process control when using arcjets for plasma deposition of material.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. G. Liebeskind, R. K. Hanson, and M. A. Cappelli, "Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume," Appl. Opt. 32, 6117-6127 (1993).
    [CrossRef] [PubMed]
  2. I. J. Wysong and J. A. Pobst, "Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster," Appl. Phys. B 67, 193-205 (1998).
    [CrossRef]
  3. D. G. Fletcher, "Arcjet flow properties determined from laser-induced fluorescence of atomic nitrogen," Appl. Opt. 38, 1850-1858 (1999).
    [CrossRef]
  4. K. Kurihara, K. Sasaki, M. Kawarada, and N. Koshino, "High rate synthesis of diamond by dc plasma jet chemical vapor deposition," Appl. Phys. Lett. 52, 437-438 (1988).
    [CrossRef]
  5. N. Ohtake and M. Yoshikawa, "Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere," J. Electrochem. Soc. 137, 717-722 (1990).
    [CrossRef]
  6. D. H. Berns and M. A. Cappelli, "Cubic boron nitride synthesis in low-density supersonic plasma flows," Appl. Phys. Lett. 68, 2711-2713 (1996).
    [CrossRef]
  7. F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, and P. Kepple, "Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy," J. Vac. Sci. Technol. A 16, 1615-1620 (1998).
    [CrossRef]
  8. L. J. Lauhon, S. A. Ustin, and W. Ho, "Large area supersonic jet epitaxy of AlN, GaN, and SiC on silicon," in III-V Nitrides. Symposium, edited by F.A. Ponce, T.D. Moustakas, I. Akasaki et al. (Mater. Res. Soc., Pittsburgh, PA, 1996), pp. 277-282.
  9. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, "Photothermal deflection spectroscopy and detection," Appl. Opt. 20, 1333-1344 (1981).
    [CrossRef] [PubMed]
  10. W. Zapka and A. C. Tam, "Noncontact optoacoustic determination of gas flow velocity and temperature simultaneously," Appl. Phys. Lett. 40, 1015-17 (1982).
    [CrossRef]
  11. M. Bertolotti, G. Liakhou, R. Livoti, F. Michelotti, and C. Sibilia, "Method for thermal-diffusivity measurements based on photothermal deflection," J. Appl. Phys. 74, 7078-7084 (1993).
    [CrossRef]
  12. G. W. Faris and R. L. Byer, "Three-dimensional beam-deflection optical tomography of a supersonic jet," Appl. Opt. 27, 5202-5212 (1988).
    [CrossRef] [PubMed]
  13. G. W. Faris and R. L. Byer, "Beam-deflection optical tomography," Opt. Lett. 12, 72-74 (1987).
    [CrossRef] [PubMed]
  14. D. Fournier, F. Lepoutre, and A. C. Boccara, "Tomographic approach for photothermal imaging using the mirage effect," J. Phys. Colloque 44 (C6), 479-482 (1983).
  15. G. W. Faris and R. L. Byer, "Quantitative three-dimensional optical tomographic imaging of supersonic flows," Science 238, 1700-1702 (1987).
    [CrossRef] [PubMed]
  16. G. W. Faris and R. L. Byer, "Beam-deflection optical tomography of a flame," Opt. Lett. 12, 155-157 (1987).
    [CrossRef] [PubMed]
  17. G. W. Faris and H. Bergstrom, "Two-wavelength beam deflection technique for electron density measurements in laser-produced plasmas," Appl. Opt. 30, 2212-2218 (1991).
    [CrossRef] [PubMed]
  18. O. Sasaki and T. Kobayashi, "Beam-deflection optical tomography of the refractive-index distribution based on the Rytov approximation," Appl. Opt. 32, 746-751 (1993).
    [CrossRef] [PubMed]
  19. Y. A. Andrienko, "Optical ray deflection tomography with fan-shaped beams," Proc. SPIE 2122, 217-225 (1994).
    [CrossRef]
  20. K. Gerstner, A. Fehl, J. Otten, D. Neidhardt, and T. Tschudi, "Continuous temperature measurements in turbulent combustion by laser beam deflection tomography," Proc. SPIE 3172, 400-404 (1997).
    [CrossRef]
  21. G. W. Faris and H. M. Hertz, "Tunable differential interferometer for optical tomography," Appl. Opt. 28, 4662-4667 (1989).
    [CrossRef] [PubMed]

  22. [CrossRef]
  23. G. A. Raiche and J. B. Jeffries, "Laser-induced fluorescence temperature measurements in a dc arcjet used for diamond deposition," Appl. Opt. 32, 4629-4635 (1993).
    [CrossRef] [PubMed]
  24. E. A. Brinkman, G. A. Raiche, M. S. Brown, and J. B. Jeffries, "Optical diagnostics for temperature measurement in a DC arcjet reactor used for diamond deposition," Appl. Phys. B 64, 689-697 (1997).
    [CrossRef]
  25. W. Juchmann, J. Luque, and J. B. Jeffries, "Atomic hydrogen concentration in a diamond depositing dc arcjet determined by calorimetry," J. Appl. Phys. 81, 8052-8056 (1997).
    [CrossRef]
  26. J. Luque, W. Juchmann, and J. B. Jeffries, "Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor," Appl. Opt. 36, 3261-3270 (1997).
    [CrossRef] [PubMed]
  27. J. Luque, W. Juchmann, and J. B. Jeffries, "Spatial density distributions of C 2 , C 3 , and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet," J. Appl. Phys. 82, 2072-2081 (1997).
    [CrossRef]
  28. W. Juchmann, J. Luque, and J. B. Jeffries, "Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence," Appl. Opt. 39, 3704-3711 (2000).
    [CrossRef]
  29. P. J. Leonard, "Refractive indices, Verdet constants, and polarizabilities of the inert gases," At. Data Nucl. Data Tables 14, 21-37 (1974).
    [CrossRef]
  30. P. V. Storm and M. A. Cappelli, "Radiative emission analysis of an expanding hydrogen arc plasma. I. Arc region diagnostics through axial emission," J. Quant. Spectrosc. Radiat. Transfer 56, 901-918 (1996).
    [CrossRef]
  31. P. V. Storm and M. A. Cappelli, "Radiative emission analysis of an expanding hydrogen arc plasma. II. Plume region diagnostics through radial emission," J. Quant. Spectrosc. Radiat. Transfer 56, 919-932 (1996).
    [CrossRef]
  32. J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, and T. Priem, "Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor," Diamond Relat. Mater. 4, 350-356 (1995).
    [CrossRef]
  33. J. Luque, W. Juchmann, E. A. Brinkman, and J. B. Jeffries, "Excited state density distributions of H, C, C 2 , and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor," J. Vac. Sci. Technol. A 16, 397-408 (1998).
    [CrossRef]
  34. J. Gardiner, W. C., Y. Hidaka, and T. Tanzawa, "Refractivity of combustion gases," Combustion and Flame 40, 213-219 (1981).
  35. P. J. Leonard, "Refractive indices, Verdet constants, and polarizabilities of the inert gases," At. Data Nucl. Data Tables 14, 21-37 (1974).

Other

J. G. Liebeskind, R. K. Hanson, and M. A. Cappelli, "Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume," Appl. Opt. 32, 6117-6127 (1993).
[CrossRef] [PubMed]

I. J. Wysong and J. A. Pobst, "Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster," Appl. Phys. B 67, 193-205 (1998).
[CrossRef]

D. G. Fletcher, "Arcjet flow properties determined from laser-induced fluorescence of atomic nitrogen," Appl. Opt. 38, 1850-1858 (1999).
[CrossRef]

K. Kurihara, K. Sasaki, M. Kawarada, and N. Koshino, "High rate synthesis of diamond by dc plasma jet chemical vapor deposition," Appl. Phys. Lett. 52, 437-438 (1988).
[CrossRef]

N. Ohtake and M. Yoshikawa, "Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere," J. Electrochem. Soc. 137, 717-722 (1990).
[CrossRef]

D. H. Berns and M. A. Cappelli, "Cubic boron nitride synthesis in low-density supersonic plasma flows," Appl. Phys. Lett. 68, 2711-2713 (1996).
[CrossRef]

F. J. Grunthaner, R. Bicknell-Tassius, P. Deelman, P. J. Grunthaner, C. Bryson, E. Snyder, J. L. Giuliani, J. P. Apruzese, and P. Kepple, "Ultrahigh vacuum arcjet nitrogen source for selected energy epitaxy of group III nitrides by molecular beam epitaxy," J. Vac. Sci. Technol. A 16, 1615-1620 (1998).
[CrossRef]

L. J. Lauhon, S. A. Ustin, and W. Ho, "Large area supersonic jet epitaxy of AlN, GaN, and SiC on silicon," in III-V Nitrides. Symposium, edited by F.A. Ponce, T.D. Moustakas, I. Akasaki et al. (Mater. Res. Soc., Pittsburgh, PA, 1996), pp. 277-282.

W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, "Photothermal deflection spectroscopy and detection," Appl. Opt. 20, 1333-1344 (1981).
[CrossRef] [PubMed]

W. Zapka and A. C. Tam, "Noncontact optoacoustic determination of gas flow velocity and temperature simultaneously," Appl. Phys. Lett. 40, 1015-17 (1982).
[CrossRef]

M. Bertolotti, G. Liakhou, R. Livoti, F. Michelotti, and C. Sibilia, "Method for thermal-diffusivity measurements based on photothermal deflection," J. Appl. Phys. 74, 7078-7084 (1993).
[CrossRef]

G. W. Faris and R. L. Byer, "Three-dimensional beam-deflection optical tomography of a supersonic jet," Appl. Opt. 27, 5202-5212 (1988).
[CrossRef] [PubMed]

G. W. Faris and R. L. Byer, "Beam-deflection optical tomography," Opt. Lett. 12, 72-74 (1987).
[CrossRef] [PubMed]

D. Fournier, F. Lepoutre, and A. C. Boccara, "Tomographic approach for photothermal imaging using the mirage effect," J. Phys. Colloque 44 (C6), 479-482 (1983).

G. W. Faris and R. L. Byer, "Quantitative three-dimensional optical tomographic imaging of supersonic flows," Science 238, 1700-1702 (1987).
[CrossRef] [PubMed]

G. W. Faris and R. L. Byer, "Beam-deflection optical tomography of a flame," Opt. Lett. 12, 155-157 (1987).
[CrossRef] [PubMed]

G. W. Faris and H. Bergstrom, "Two-wavelength beam deflection technique for electron density measurements in laser-produced plasmas," Appl. Opt. 30, 2212-2218 (1991).
[CrossRef] [PubMed]

O. Sasaki and T. Kobayashi, "Beam-deflection optical tomography of the refractive-index distribution based on the Rytov approximation," Appl. Opt. 32, 746-751 (1993).
[CrossRef] [PubMed]

Y. A. Andrienko, "Optical ray deflection tomography with fan-shaped beams," Proc. SPIE 2122, 217-225 (1994).
[CrossRef]

K. Gerstner, A. Fehl, J. Otten, D. Neidhardt, and T. Tschudi, "Continuous temperature measurements in turbulent combustion by laser beam deflection tomography," Proc. SPIE 3172, 400-404 (1997).
[CrossRef]

G. W. Faris and H. M. Hertz, "Tunable differential interferometer for optical tomography," Appl. Opt. 28, 4662-4667 (1989).
[CrossRef] [PubMed]


[CrossRef]

G. A. Raiche and J. B. Jeffries, "Laser-induced fluorescence temperature measurements in a dc arcjet used for diamond deposition," Appl. Opt. 32, 4629-4635 (1993).
[CrossRef] [PubMed]

E. A. Brinkman, G. A. Raiche, M. S. Brown, and J. B. Jeffries, "Optical diagnostics for temperature measurement in a DC arcjet reactor used for diamond deposition," Appl. Phys. B 64, 689-697 (1997).
[CrossRef]

W. Juchmann, J. Luque, and J. B. Jeffries, "Atomic hydrogen concentration in a diamond depositing dc arcjet determined by calorimetry," J. Appl. Phys. 81, 8052-8056 (1997).
[CrossRef]

J. Luque, W. Juchmann, and J. B. Jeffries, "Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor," Appl. Opt. 36, 3261-3270 (1997).
[CrossRef] [PubMed]

J. Luque, W. Juchmann, and J. B. Jeffries, "Spatial density distributions of C 2 , C 3 , and CH radicals by laser-induced fluorescence in a diamond depositing dc-arcjet," J. Appl. Phys. 82, 2072-2081 (1997).
[CrossRef]

W. Juchmann, J. Luque, and J. B. Jeffries, "Flow characterization of a diamond-depositing dc arcjet by laser-induced fluorescence," Appl. Opt. 39, 3704-3711 (2000).
[CrossRef]

P. J. Leonard, "Refractive indices, Verdet constants, and polarizabilities of the inert gases," At. Data Nucl. Data Tables 14, 21-37 (1974).
[CrossRef]

P. V. Storm and M. A. Cappelli, "Radiative emission analysis of an expanding hydrogen arc plasma. I. Arc region diagnostics through axial emission," J. Quant. Spectrosc. Radiat. Transfer 56, 901-918 (1996).
[CrossRef]

P. V. Storm and M. A. Cappelli, "Radiative emission analysis of an expanding hydrogen arc plasma. II. Plume region diagnostics through radial emission," J. Quant. Spectrosc. Radiat. Transfer 56, 919-932 (1996).
[CrossRef]

J. C. Cubertafon, M. Chenevier, A. Campargue, G. Verven, and T. Priem, "Emission spectroscopy diagnostics of a d.c. plasma jet diamond reactor," Diamond Relat. Mater. 4, 350-356 (1995).
[CrossRef]

J. Luque, W. Juchmann, E. A. Brinkman, and J. B. Jeffries, "Excited state density distributions of H, C, C 2 , and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor," J. Vac. Sci. Technol. A 16, 397-408 (1998).
[CrossRef]

J. Gardiner, W. C., Y. Hidaka, and T. Tanzawa, "Refractivity of combustion gases," Combustion and Flame 40, 213-219 (1981).

P. J. Leonard, "Refractive indices, Verdet constants, and polarizabilities of the inert gases," At. Data Nucl. Data Tables 14, 21-37 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Experimental apparatus for scanned beam deflection measurements.

Fig. 2.
Fig. 2.

(a) Background and raw signals, (b) corrected signal (raw signal minus background) and (c) reconstructed refractive index as a function of radial distance for arcjet using a mixture of 1 : 1 : 0.01 argon/hydrogen/methane at a chamber pressure of 24 Torr and a distance of 24 mm from the nozzle exit.

Fig. 3.
Fig. 3.

Reconstructed refractive index profiles as functions of distance from the nozzle exit for argon 3(a) and a 1 : 1 : 0.01 argon/hydrogen/methane mixture 3(b). The chamber pressures are 31.2 and 23.9 Torr for Figs 3(a) and 3(b), respectively.

Fig. 4.
Fig. 4.

Refractive index 4(a) and density 4(b) of argon for cold gas flow (arc off, chamber pressure of 5.2 Torr) and with the arc on at chamber pressures of 5.1, 15, and 30.4 Torr.

Fig. 5.
Fig. 5.

Argon density with arcjet off and a chamber pressure of 5.2 Torr. Density range is 3.40×1017 atoms/cm3.

Fig. 6.
Fig. 6.

Argon density 6(a) and optical emission 6(b) for pure argon and a chamber pressure of 5.3 Torr. Density range in Fig 6(a) is 1.41×1017 atoms/cm3.

Fig. 7.
Fig. 7.

Argon density 7(a) and optical emission 7(b) for pure argon and a chamber pressure of 15.0 Torr. Density range in Fig 7(a) is 3.09×1017 atoms/cm3.

Fig. 8.
Fig. 8.

Argon density 8(a) and optical emission 8(b) for pure argon and a chamber pressure of 30.4 Torr. Density range in Fig 8(a) is 5.53×1017 atoms/cm3.

Fig. 9.
Fig. 9.

Refractive index 9(a) and optical emission 9(b) for a 1 : 1.2 : 0.01 argon/hydrogen/ methane mixture and a chamber pressure of 4.1 Torr. Refractive index range in Fig 9(a) is 1.55×10-6.

Fig. 10.
Fig. 10.

Refractive index 10(a) and optical emission 10(b) for a 1 : 0.6 : 0.01 argon/ hydrogen/methane mixture and a chamber pressure of 11.4 Torr. Refractive index range in Fig 10(a) is 2.85×10-6.

Fig. 11.
Fig. 11.

Refractive index 11(a) and optical emission 11(b) for a 1 : 0.5 : 0.01 argon/ hydrogen/methane mixture and a chamber pressure of 24 Torr. Refractive index range in Fig 11(a) is 5.47×10-6.

Fig. 12.
Fig. 12.

Refractive index 12(a) and optical emission 12(b) for a 1 : 1 : 0.01 argon/ hydrogen/methane and a chamber pressure of 24 Torr. Refractive index range in Fig 12(a) is 5.21×10-6.

Metrics