Abstract

We present the results of numerical experiments on a two-dimensional model atom driven by a high-intense laser pulse. The electron wave-packet behavior is studied in a range of laser parameters corresponding to the dynamic stabilization regime. Wave packet localization in this regime with arbitrary laser polarizations is shown to manifest itself macroscopically by high-order harmonic production in the form of long trains of attosecond pulses. Calculations for the sub-relativistic regime of laser-atom interaction are carried out without making the dipole approximation in order to take into account the Lorentz force effect in wave packet evolution. The transition from polychotomy to the magnetic-field-induced drifting at very high laser intensities is documented which results in the electron delocalization. As a consequence, the intensity dependence of the atomic survival probability as well as that of the efficiency of high-order harmonic production possess a wide “stabilization window” followed by an abrupt drop because of the magnetic field effect.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Protopapas, C. H. Keitel, and P. L. Knight, "Atomic physics with super-high intensity lasers," Rep. Prog. Phys. 60, 389-486 (1997).
    [CrossRef]
  2. M. Gavrila, "Atomic structure and decay in high frequency fields," in Atoms in Intense Laser Fields, M.Gavrila, ed. (Academic, San Diego, CA, 1992).
  3. Q. Su, J. H. Eberly, and J. Javanainen, "Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field," Phys. Rev. Lett. 64, 862-865 (1990).
    [CrossRef] [PubMed]
  4. K. C. Kulander, K. J. Schafer, and J. L. Krause, "Dynamic stabilization of hydrogen in an intense, high-frequency, pulsed laser field," Phys. Rev. Lett. 66, 2601-2604 (1991).
    [CrossRef] [PubMed]
  5. V. C. Reed, P. L. Knight, and K. Burnett, "Suppression of ionization in superintense fields without dichotomy," Phys.Rev.Lett. 67, 1415-1418 (1991).
    [CrossRef] [PubMed]
  6. R. Grobe and M. V. Fedorov, "Packet spreading, stabilization, and localization in superstrong fields," Phys. Rev. Lett. 68, 2592-2595 (1992).
    [CrossRef] [PubMed]
  7. T. Katsouleas and W. B. Mori, "Comment on "Packet spreading, stabilization, and localization in superstrong fields"," Phys. Rev. Lett. 70, 1561 (1993).
    [CrossRef] [PubMed]
  8. R. Grobe and M. V. Fedorov, "Polychotomy, spreading, and relativistic drift in strong field photodetachment," Laser Phys. 3, 265-273 (1993).
  9. A. Bugacov, M. Pont, and R. Shakeshaft, "Possibility of breakdown of atomic stabilization in an intense high-frequency field," Phys. Rev. A 48, R4027-R4030 (1993).
    [CrossRef]
  10. O. Latinne, C. J. Joachain, and M. D�rr, "Atomic hydrogen in a superintense high-frequency field: testing the dipole approximation," Europhys. Lett. 26, 333-338 (1994).
    [CrossRef]
  11. C. H. Keitel and P. L. Knight, "Monte Carlo classical simulations of ionization and harmonic generation in the relativistic domain," Phys. Rev. A 51, 1420-1430 (1995).
    [CrossRef] [PubMed]
  12. A. V. Kim, M. Yu. Ryabikin, A. M. Sergeev, D. Farina, and M. Lontano, "Effect of magnetic component of laser field on efficiency of high-energy photon burst generation from atoms ionized by few-optical-cycle pulses," in ICONO'98: Ultrafast Phenomena and Interaction of Super-Strong Laser Fields with Matter: Nonlinear Optics and High-Field Physics, M. V. Fedorov, V. M. Gordienko, V. V. Shuvalov, and V. D. Taranukhin, eds., Proc. SPIE 3735, 158-164 (1999).
  13. A. V. Kim, M. Yu. Ryabikin, and A. M. Sergeev, "From femtosecond to attosecond pulses," Usp. Fiz. Nauk 169, 58-66 (1999) (Phys. Usp. 38, 54-61 (1999)).
    [CrossRef]
  14. J. R. V�zques de Aldana and L. Roso, "Magnetic-field effect in atomic ionization by intense laser fields," Opt. Express 5, 144-148 (1999), http://www.opticsexpress.org/oearchive/source/11811.htm.
    [CrossRef]
  15. R. M. Potvliege, "Role of the magnetic component of the incident field in the adiabatic stabilization of circular states," Laser Phys. 10, 143-146 (2000).
  16. M. Yu. Ryabikin and A. M. Sergeev, "Lorentz force effect in strong-field atomic stabilization," Seminar on Physics of Multiphoton Processes, Moscow, Russia, April 5, 2000, http://www.gpi.ru/wrc/seminar/delone/2000.html; see also: LPHYS'2000, Bordeaux, France, July 17-21, 2000, http://www-drecam.cea.fr/Lphys-2000/strong.htm; Laser Phys. 11 (2001) - in press.
  17. L. Roso and J. R. V�zques de Aldana, "Atomic photoionization beyond the dipole approximation," LPHYS'2000, Bordeaux, France, July 17-21, 2000, http://www-drecam.cea.fr/Lphys-2000/strong.htm; Laser Phys. 11 (2001) - in press.
  18. N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V�zques de Aldana, and L. Roso, "Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses," Phys. Rev. Lett. 85, 1835-1838 (2000).
    [CrossRef] [PubMed]
  19. A. A. Babin, A. V. Kim, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, "Interaction of superstrong laser fields with matter: hypotheses, effects, and applications," Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 39, 713-734 (1996) (Radiophysics and Quantum Electronics 39, 472-485 (1996)).
  20. M. Protopapas, D. G. Lappas, and P. L. Knight, "Strong field ionization in arbitrary laser polarizations," Phys. Rev. Lett. 79, 4550-4553 (1997).
    [CrossRef]
  21. A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, "Stabilization with arbitrary laser polarizations," Phys. Rev. A 58, R2652-R2655 (1998).
    [CrossRef]
  22. M. D. Feit, J. A. Fleck, Jr., and A. Steiger, "Solution of the Schr�dinger equation by a spectral method," J. Comp. Phys. 47, 412-433 (1982).
    [CrossRef]
  23. A. Patel, N. J. Kylstra, and P. L. Knight, "Ellipticity and pulse shape dependence of localized wavepackets," Opt. Express 4, 496-511 (1999), http://www.opticsexpress.org/oearchive/source/10164.htm.
    [CrossRef] [PubMed]
  24. V. C. Reed, K. Burnett, and P. L. Knight, "Harmonic generation in the Kramers-Henneberger stabilization regime," Phys. Rev. A 47, R34-R37 (1993).
    [CrossRef] [PubMed]
  25. G. Kaiser, A Friendly Guide to Wavelets (Birkhauser, Boston, 1994).
  26. M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software (A.K. Peters, Wellesley, MA, 1994).
  27. D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis (Cambridge University Press, Cambridge, 2000).
  28. P. Antoine, B. Piraux, and A. Maquet, "Time profile of harmonics generated by a single atom in a strong electromagnetic field," Phys. Rev. A 51, R1750-R1753 (1995).
    [CrossRef] [PubMed]
  29. X. M. Tong and S. I. Chu, "Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses," Phys. Rev. A 61, 021802(R) (2000).
    [CrossRef]
  30. P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, "Subfemtosecond pulses," Opt. Lett. 19, 1870-1872 (1994).
    [CrossRef] [PubMed]
  31. P. Antoine, A. L'Huillier, and M. Lewenstein, "Attosecond pulse trains using high-order harmonics," Phys. Rev. Lett. 77, 1234-1237 (1996).
    [CrossRef] [PubMed]
  32. K. J. Schafer and K. C. Kulander, "High harmonic generation from ultrafast pump lasers," Phys. Rev. Lett. 78, 638-641 (1997).
    [CrossRef]
  33. I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "High-harmonic generation of attosecond pulses in the 'single-cycle' regime," Phys. Rev. Lett. 78, 1251-1254 (1997).
    [CrossRef]

Other (33)

M. Protopapas, C. H. Keitel, and P. L. Knight, "Atomic physics with super-high intensity lasers," Rep. Prog. Phys. 60, 389-486 (1997).
[CrossRef]

M. Gavrila, "Atomic structure and decay in high frequency fields," in Atoms in Intense Laser Fields, M.Gavrila, ed. (Academic, San Diego, CA, 1992).

Q. Su, J. H. Eberly, and J. Javanainen, "Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field," Phys. Rev. Lett. 64, 862-865 (1990).
[CrossRef] [PubMed]

K. C. Kulander, K. J. Schafer, and J. L. Krause, "Dynamic stabilization of hydrogen in an intense, high-frequency, pulsed laser field," Phys. Rev. Lett. 66, 2601-2604 (1991).
[CrossRef] [PubMed]

V. C. Reed, P. L. Knight, and K. Burnett, "Suppression of ionization in superintense fields without dichotomy," Phys.Rev.Lett. 67, 1415-1418 (1991).
[CrossRef] [PubMed]

R. Grobe and M. V. Fedorov, "Packet spreading, stabilization, and localization in superstrong fields," Phys. Rev. Lett. 68, 2592-2595 (1992).
[CrossRef] [PubMed]

T. Katsouleas and W. B. Mori, "Comment on "Packet spreading, stabilization, and localization in superstrong fields"," Phys. Rev. Lett. 70, 1561 (1993).
[CrossRef] [PubMed]

R. Grobe and M. V. Fedorov, "Polychotomy, spreading, and relativistic drift in strong field photodetachment," Laser Phys. 3, 265-273 (1993).

A. Bugacov, M. Pont, and R. Shakeshaft, "Possibility of breakdown of atomic stabilization in an intense high-frequency field," Phys. Rev. A 48, R4027-R4030 (1993).
[CrossRef]

O. Latinne, C. J. Joachain, and M. D�rr, "Atomic hydrogen in a superintense high-frequency field: testing the dipole approximation," Europhys. Lett. 26, 333-338 (1994).
[CrossRef]

C. H. Keitel and P. L. Knight, "Monte Carlo classical simulations of ionization and harmonic generation in the relativistic domain," Phys. Rev. A 51, 1420-1430 (1995).
[CrossRef] [PubMed]

A. V. Kim, M. Yu. Ryabikin, A. M. Sergeev, D. Farina, and M. Lontano, "Effect of magnetic component of laser field on efficiency of high-energy photon burst generation from atoms ionized by few-optical-cycle pulses," in ICONO'98: Ultrafast Phenomena and Interaction of Super-Strong Laser Fields with Matter: Nonlinear Optics and High-Field Physics, M. V. Fedorov, V. M. Gordienko, V. V. Shuvalov, and V. D. Taranukhin, eds., Proc. SPIE 3735, 158-164 (1999).

A. V. Kim, M. Yu. Ryabikin, and A. M. Sergeev, "From femtosecond to attosecond pulses," Usp. Fiz. Nauk 169, 58-66 (1999) (Phys. Usp. 38, 54-61 (1999)).
[CrossRef]

J. R. V�zques de Aldana and L. Roso, "Magnetic-field effect in atomic ionization by intense laser fields," Opt. Express 5, 144-148 (1999), http://www.opticsexpress.org/oearchive/source/11811.htm.
[CrossRef]

R. M. Potvliege, "Role of the magnetic component of the incident field in the adiabatic stabilization of circular states," Laser Phys. 10, 143-146 (2000).

M. Yu. Ryabikin and A. M. Sergeev, "Lorentz force effect in strong-field atomic stabilization," Seminar on Physics of Multiphoton Processes, Moscow, Russia, April 5, 2000, http://www.gpi.ru/wrc/seminar/delone/2000.html; see also: LPHYS'2000, Bordeaux, France, July 17-21, 2000, http://www-drecam.cea.fr/Lphys-2000/strong.htm; Laser Phys. 11 (2001) - in press.

L. Roso and J. R. V�zques de Aldana, "Atomic photoionization beyond the dipole approximation," LPHYS'2000, Bordeaux, France, July 17-21, 2000, http://www-drecam.cea.fr/Lphys-2000/strong.htm; Laser Phys. 11 (2001) - in press.

N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R. V�zques de Aldana, and L. Roso, "Breakdown of stabilization of atoms interacting with intense, high-frequency laser pulses," Phys. Rev. Lett. 85, 1835-1838 (2000).
[CrossRef] [PubMed]

A. A. Babin, A. V. Kim, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, "Interaction of superstrong laser fields with matter: hypotheses, effects, and applications," Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 39, 713-734 (1996) (Radiophysics and Quantum Electronics 39, 472-485 (1996)).

M. Protopapas, D. G. Lappas, and P. L. Knight, "Strong field ionization in arbitrary laser polarizations," Phys. Rev. Lett. 79, 4550-4553 (1997).
[CrossRef]

A. Patel, M. Protopapas, D. G. Lappas, and P. L. Knight, "Stabilization with arbitrary laser polarizations," Phys. Rev. A 58, R2652-R2655 (1998).
[CrossRef]

M. D. Feit, J. A. Fleck, Jr., and A. Steiger, "Solution of the Schr�dinger equation by a spectral method," J. Comp. Phys. 47, 412-433 (1982).
[CrossRef]

A. Patel, N. J. Kylstra, and P. L. Knight, "Ellipticity and pulse shape dependence of localized wavepackets," Opt. Express 4, 496-511 (1999), http://www.opticsexpress.org/oearchive/source/10164.htm.
[CrossRef] [PubMed]

V. C. Reed, K. Burnett, and P. L. Knight, "Harmonic generation in the Kramers-Henneberger stabilization regime," Phys. Rev. A 47, R34-R37 (1993).
[CrossRef] [PubMed]

G. Kaiser, A Friendly Guide to Wavelets (Birkhauser, Boston, 1994).

M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software (A.K. Peters, Wellesley, MA, 1994).

D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis (Cambridge University Press, Cambridge, 2000).

P. Antoine, B. Piraux, and A. Maquet, "Time profile of harmonics generated by a single atom in a strong electromagnetic field," Phys. Rev. A 51, R1750-R1753 (1995).
[CrossRef] [PubMed]

X. M. Tong and S. I. Chu, "Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses," Phys. Rev. A 61, 021802(R) (2000).
[CrossRef]

P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, "Subfemtosecond pulses," Opt. Lett. 19, 1870-1872 (1994).
[CrossRef] [PubMed]

P. Antoine, A. L'Huillier, and M. Lewenstein, "Attosecond pulse trains using high-order harmonics," Phys. Rev. Lett. 77, 1234-1237 (1996).
[CrossRef] [PubMed]

K. J. Schafer and K. C. Kulander, "High harmonic generation from ultrafast pump lasers," Phys. Rev. Lett. 78, 638-641 (1997).
[CrossRef]

I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "High-harmonic generation of attosecond pulses in the 'single-cycle' regime," Phys. Rev. Lett. 78, 1251-1254 (1997).
[CrossRef]

Supplementary Material (6)

» Media 1: MOV (661 KB)     
» Media 2: MOV (798 KB)     
» Media 3: MOV (1412 KB)     
» Media 4: MOV (685 KB)     
» Media 5: MOV (992 KB)     
» Media 6: MOV (1003 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(677 KB) Movie of time evolution of the electron probability distribution in a 14-cycle linearly polarized laser pulse with ω o=1 and Eo =15 (in the dipole approximation)

Fig. 2.
Fig. 2.

Snapshot from the movie in Fig. 2 taken after 12 cycles of a laser pulse

Fig. 3.
Fig. 3.

(817 KB) Movie of time evolution of the electron probability distribution in a 14-cycle circularly polarized laser pulse with ωo =1 and Eo =15 (in the dipole approximation)

Fig. 4.
Fig. 4.

Snapshot from the movie in Fig. 3 taken after 12 cycles of a laser pulse

Fig. 5.
Fig. 5.

(1.446 MB) Movie of time evolution of the electron probability distribution in a 14-cycle circularly polarized laser pulse with ω o=0.2 and E o=0.1 (in the dipole approximation)

Fig. 6.
Fig. 6.

Snapshot from the movie in Fig. 5 taken after 9 cycles of a laser pulse

Fig. 7.
Fig. 7.

Harmonic spectrum for the same case as in Fig. 1

Fig. 8.
Fig. 8.

Time profile of the 57-th harmonic for the same case as in Fig. 1

Fig. 9.
Fig. 9.

(702 KB) Movie of time evolution of the electron probability distribution in a 14-cycle laser pulse with wo=1 and E o=15 (without the dipole approximation)

Fig. 10.
Fig. 10.

(1.015 MB) Same as in Fig. 9 with Eo =20

Fig. 11.
Fig. 11.

(1.027 MB) Same as in Fig. 9 with E o=22.5

Fig. 12.
Fig. 12.

Snapshots of the electron probability distribution after 12 cycles of a laser pulse with wo=1 and a) E o=15, b) E o=20, and c) E o=22.5 (without the dipole approximation)

Fig. 13.
Fig. 13.

Harmonic spectrum for a 14-cycle laser pulse with wo=1 and E o=22.5 with (upper curve) and without (lower curve) the dipole approximation

Fig. 14.
Fig. 14.

Atom survival probability for a 14-cycle pulse with ωo=1 as a function of the electric field strength E o with (upper curve) and without (lower curve) the dipole approximation

Fig. 15.
Fig. 15.

Intensity of the 49-th harmonic for a 14-cycle pulse with ωo=1 as a function of the electric field strength E o with (upper curve) and without (lower curve) the dipole approximation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i Ψ t = V ( r ) Ψ + 1 2 ( p + A c ) 2 Ψ
Ψ ˜ = exp [ i v z z + i 2 t ( v x 2 + v z 2 ) d t ] Ψ ,
i Ψ ˜ t = V Ψ ˜ 1 2 ( 2 x 2 + 2 x 2 ) Ψ ˜ i v x Ψ ˜ x i v z Ψ ˜ z .

Metrics