Abstract

The polarization properties of light backscattered from a two layer scattering medium are investigated. Linear, circular and elliptical polarization states are considered and it is demonstrated that the degree of polarization of the backscattered light is sensitive to the optical properties of both layers and to layer thickness. Furthermore, it is shown that the polarization memory of circularly polarized light enables deeper layers to be probed whereas linearly polarized light is more sensitive to surface layers. This has applications for characterizing burns and melanoma.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a review see, J.C. Hebden, S.R. Arridge, and D.T. Delpy, “Optical imaging in medicine. 1. Experimental techniques,” Phys. Med. Biol. 42, 825–40 (1997).
    [CrossRef] [PubMed]
  2. M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin Optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
    [CrossRef] [PubMed]
  3. Y.T. Pan and D.L. Farkas, “High-resolution imaging of living human skin with optical coherence tomography,” Scanning 21, 134–135 (1999).
  4. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Amer. Acad. Derm. 37, 958–963 (1997).
    [CrossRef]
  5. J.M. Schmitt, A.H. Gandjbakhche, and R.F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
    [CrossRef] [PubMed]
  6. P. Bruscaglioni, G. Zaccanti, and Q. Wei, “Transmission of a pulsed polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, 6142–6150 (1993).
    [CrossRef] [PubMed]
  7. S.P. Morgan, M.P. Khong, and M.G. Somekh, “Effects of polarization state and scatterer concentration on optical imaging through scattering media,” Appl. Opt. 36, 1560–1565 (1997).
    [CrossRef] [PubMed]
  8. S.L. Jacques, J.R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129 (2000).
    [CrossRef]
  9. S.G. Demos, H.B. Radousky, and R.R. Alfano, “Deep subsurface imaging in tissues using spectral and polarization filtering,” Opt. Express 7, 23–28 (2000), http://www.opticsexpress.org/opticsexpress/ framestocv7n1.htm
    [CrossRef] [PubMed]
  10. G. Yao and L. Wang, “Propagation of polarized light in turbid media: simulated animation sequences,” Opt. Express 7, 198–203 (2000), http://www.opticsexpress.org/oearchive/source/23140.htm
    [CrossRef] [PubMed]
  11. G.D. Lewis, D.L. Jordan, and P.J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937–3944 (1999).
    [CrossRef]
  12. H. Dehghani, D.T. Delpy, and S.R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
    [CrossRef]
  13. M.A. Afromowitz, J.B. Callis, D.M. Heimbach, L.A. DeSoto, and M.K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE. Trans. Biomed. Eng. 35, 842–849 (1988).
    [CrossRef] [PubMed]
  14. R.M. MacKie. “Clinical recognition of early invasive malignant melanoma. Br. Med. J. 301, 1005–1006 (1990).
    [CrossRef]
  15. L.O. Svaasand, T. Spott, J.B. Fishkin, T. Pham, B.J. Tromberg, and M.W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
    [CrossRef] [PubMed]
  16. T.H. Pham, T. Spott, L.O. Svaasand, and B.J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt. 39, 4733–4745 (2000).
    [CrossRef]
  17. T.J. Farrell, M.S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998).
    [CrossRef]
  18. I.V. Meglinsky and S.J. Matcher, “Development of Monte Carlo technique for determination of skin oxygenation by near-infrared spectroscopy,” Proc. SPIE. 3598, 279–287 (1999).
    [CrossRef]
  19. F.C. MacKintosh, J.X. Zhu, D.J. Pine, and D.A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
    [CrossRef]
  20. D. Bicout, C. Brosseau, A.S. Martinez, and J.M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
    [CrossRef]
  21. A.H. Hielscher, J.R. Mourant, and I.J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125–135 (1997).
    [CrossRef] [PubMed]
  22. W.S. Bickel and W.M. Bailey, “Stokes vectors, Mueller matrices and polarized light,” Am.J.Phys. 53, 468–478 (1985).
    [CrossRef]
  23. M. Firbank and D.T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
    [CrossRef]
  24. P.C.Y. Chang, J.G. Walker, K.I. Hopcraft, B. Ablitt, and E. Jakeman, “Polarization discrimination for active imaging in scattering media,” Opt. Comms. 159, 1–6 (1999).
    [CrossRef]

2000 (4)

1999 (6)

I.V. Meglinsky and S.J. Matcher, “Development of Monte Carlo technique for determination of skin oxygenation by near-infrared spectroscopy,” Proc. SPIE. 3598, 279–287 (1999).
[CrossRef]

L.O. Svaasand, T. Spott, J.B. Fishkin, T. Pham, B.J. Tromberg, and M.W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
[CrossRef] [PubMed]

G.D. Lewis, D.L. Jordan, and P.J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937–3944 (1999).
[CrossRef]

H. Dehghani, D.T. Delpy, and S.R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

Y.T. Pan and D.L. Farkas, “High-resolution imaging of living human skin with optical coherence tomography,” Scanning 21, 134–135 (1999).

P.C.Y. Chang, J.G. Walker, K.I. Hopcraft, B. Ablitt, and E. Jakeman, “Polarization discrimination for active imaging in scattering media,” Opt. Comms. 159, 1–6 (1999).
[CrossRef]

1998 (1)

1997 (4)

1994 (1)

D. Bicout, C. Brosseau, A.S. Martinez, and J.M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

1993 (2)

M. Firbank and D.T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

P. Bruscaglioni, G. Zaccanti, and Q. Wei, “Transmission of a pulsed polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, 6142–6150 (1993).
[CrossRef] [PubMed]

1992 (1)

1990 (1)

R.M. MacKie. “Clinical recognition of early invasive malignant melanoma. Br. Med. J. 301, 1005–1006 (1990).
[CrossRef]

1989 (2)

F.C. MacKintosh, J.X. Zhu, D.J. Pine, and D.A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin Optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

1988 (1)

M.A. Afromowitz, J.B. Callis, D.M. Heimbach, L.A. DeSoto, and M.K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE. Trans. Biomed. Eng. 35, 842–849 (1988).
[CrossRef] [PubMed]

1985 (1)

W.S. Bickel and W.M. Bailey, “Stokes vectors, Mueller matrices and polarized light,” Am.J.Phys. 53, 468–478 (1985).
[CrossRef]

Ablitt, B.

P.C.Y. Chang, J.G. Walker, K.I. Hopcraft, B. Ablitt, and E. Jakeman, “Polarization discrimination for active imaging in scattering media,” Opt. Comms. 159, 1–6 (1999).
[CrossRef]

Afromowitz, M.A.

M.A. Afromowitz, J.B. Callis, D.M. Heimbach, L.A. DeSoto, and M.K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE. Trans. Biomed. Eng. 35, 842–849 (1988).
[CrossRef] [PubMed]

Alfano, R.R.

Arridge, S.R.

H. Dehghani, D.T. Delpy, and S.R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

For a review see, J.C. Hebden, S.R. Arridge, and D.T. Delpy, “Optical imaging in medicine. 1. Experimental techniques,” Phys. Med. Biol. 42, 825–40 (1997).
[CrossRef] [PubMed]

Bailey, W.M.

W.S. Bickel and W.M. Bailey, “Stokes vectors, Mueller matrices and polarized light,” Am.J.Phys. 53, 468–478 (1985).
[CrossRef]

Berns, M.W.

L.O. Svaasand, T. Spott, J.B. Fishkin, T. Pham, B.J. Tromberg, and M.W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
[CrossRef] [PubMed]

Bickel, W.S.

W.S. Bickel and W.M. Bailey, “Stokes vectors, Mueller matrices and polarized light,” Am.J.Phys. 53, 468–478 (1985).
[CrossRef]

Bicout, D.

D. Bicout, C. Brosseau, A.S. Martinez, and J.M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Bigio, I.J.

Birngruber, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Amer. Acad. Derm. 37, 958–963 (1997).
[CrossRef]

Bonner, R.F.

Brosseau, C.

D. Bicout, C. Brosseau, A.S. Martinez, and J.M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Bruscaglioni, P.

Callis, J.B.

M.A. Afromowitz, J.B. Callis, D.M. Heimbach, L.A. DeSoto, and M.K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE. Trans. Biomed. Eng. 35, 842–849 (1988).
[CrossRef] [PubMed]

Chang, P.C.Y.

P.C.Y. Chang, J.G. Walker, K.I. Hopcraft, B. Ablitt, and E. Jakeman, “Polarization discrimination for active imaging in scattering media,” Opt. Comms. 159, 1–6 (1999).
[CrossRef]

Dehghani, H.

H. Dehghani, D.T. Delpy, and S.R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

Delpy, D.T.

H. Dehghani, D.T. Delpy, and S.R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

For a review see, J.C. Hebden, S.R. Arridge, and D.T. Delpy, “Optical imaging in medicine. 1. Experimental techniques,” Phys. Med. Biol. 42, 825–40 (1997).
[CrossRef] [PubMed]

M. Firbank and D.T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Demos, S.G.

DeSoto, L.A.

M.A. Afromowitz, J.B. Callis, D.M. Heimbach, L.A. DeSoto, and M.K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE. Trans. Biomed. Eng. 35, 842–849 (1988).
[CrossRef] [PubMed]

Engelhardt, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Amer. Acad. Derm. 37, 958–963 (1997).
[CrossRef]

Essenpreis, M.

Farkas, D.L.

Y.T. Pan and D.L. Farkas, “High-resolution imaging of living human skin with optical coherence tomography,” Scanning 21, 134–135 (1999).

Farrell, T.J.

Firbank, M.

M. Firbank and D.T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Fishkin, J.B.

L.O. Svaasand, T. Spott, J.B. Fishkin, T. Pham, B.J. Tromberg, and M.W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
[CrossRef] [PubMed]

Gandjbakhche, A.H.

Hebden, J.C.

For a review see, J.C. Hebden, S.R. Arridge, and D.T. Delpy, “Optical imaging in medicine. 1. Experimental techniques,” Phys. Med. Biol. 42, 825–40 (1997).
[CrossRef] [PubMed]

Heimbach, D.M.

M.A. Afromowitz, J.B. Callis, D.M. Heimbach, L.A. DeSoto, and M.K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE. Trans. Biomed. Eng. 35, 842–849 (1988).
[CrossRef] [PubMed]

Hielscher, A.H.

Hopcraft, K.I.

P.C.Y. Chang, J.G. Walker, K.I. Hopcraft, B. Ablitt, and E. Jakeman, “Polarization discrimination for active imaging in scattering media,” Opt. Comms. 159, 1–6 (1999).
[CrossRef]

Jacques, S.L.

S.L. Jacques, J.R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129 (2000).
[CrossRef]

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin Optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Jakeman, E.

P.C.Y. Chang, J.G. Walker, K.I. Hopcraft, B. Ablitt, and E. Jakeman, “Polarization discrimination for active imaging in scattering media,” Opt. Comms. 159, 1–6 (1999).
[CrossRef]

Jordan, D.L.

Khong, M.P.

Lankenau, E.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Amer. Acad. Derm. 37, 958–963 (1997).
[CrossRef]

Lee, K.

S.L. Jacques, J.R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129 (2000).
[CrossRef]

Lewis, G.D.

MacKie, R.M.

R.M. MacKie. “Clinical recognition of early invasive malignant melanoma. Br. Med. J. 301, 1005–1006 (1990).
[CrossRef]

MacKintosh, F.C.

F.C. MacKintosh, J.X. Zhu, D.J. Pine, and D.A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Martinez, A.S.

D. Bicout, C. Brosseau, A.S. Martinez, and J.M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Matcher, S.J.

I.V. Meglinsky and S.J. Matcher, “Development of Monte Carlo technique for determination of skin oxygenation by near-infrared spectroscopy,” Proc. SPIE. 3598, 279–287 (1999).
[CrossRef]

Meglinsky, I.V.

I.V. Meglinsky and S.J. Matcher, “Development of Monte Carlo technique for determination of skin oxygenation by near-infrared spectroscopy,” Proc. SPIE. 3598, 279–287 (1999).
[CrossRef]

Morgan, S.P.

Mourant, J.R.

Norton, M.K.

M.A. Afromowitz, J.B. Callis, D.M. Heimbach, L.A. DeSoto, and M.K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE. Trans. Biomed. Eng. 35, 842–849 (1988).
[CrossRef] [PubMed]

Pan, Y.T.

Y.T. Pan and D.L. Farkas, “High-resolution imaging of living human skin with optical coherence tomography,” Scanning 21, 134–135 (1999).

Patterson, M.S.

Pham, T.

L.O. Svaasand, T. Spott, J.B. Fishkin, T. Pham, B.J. Tromberg, and M.W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
[CrossRef] [PubMed]

Pham, T.H.

Pine, D.J.

F.C. MacKintosh, J.X. Zhu, D.J. Pine, and D.A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Radousky, H.B.

Roberts, P.J.

Roman, J.R.

S.L. Jacques, J.R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129 (2000).
[CrossRef]

Schmitt, J.M.

D. Bicout, C. Brosseau, A.S. Martinez, and J.M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

J.M. Schmitt, A.H. Gandjbakhche, and R.F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[CrossRef] [PubMed]

Somekh, M.G.

Spott, T.

T.H. Pham, T. Spott, L.O. Svaasand, and B.J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt. 39, 4733–4745 (2000).
[CrossRef]

L.O. Svaasand, T. Spott, J.B. Fishkin, T. Pham, B.J. Tromberg, and M.W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
[CrossRef] [PubMed]

Star, W.M.

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin Optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Sterenborg, H.J.C.M.

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin Optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Svaasand, L.O.

T.H. Pham, T. Spott, L.O. Svaasand, and B.J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt. 39, 4733–4745 (2000).
[CrossRef]

L.O. Svaasand, T. Spott, J.B. Fishkin, T. Pham, B.J. Tromberg, and M.W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
[CrossRef] [PubMed]

Tromberg, B.J.

T.H. Pham, T. Spott, L.O. Svaasand, and B.J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt. 39, 4733–4745 (2000).
[CrossRef]

L.O. Svaasand, T. Spott, J.B. Fishkin, T. Pham, B.J. Tromberg, and M.W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
[CrossRef] [PubMed]

Van Gemert, M.J.C.

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin Optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Walker, J.G.

P.C.Y. Chang, J.G. Walker, K.I. Hopcraft, B. Ablitt, and E. Jakeman, “Polarization discrimination for active imaging in scattering media,” Opt. Comms. 159, 1–6 (1999).
[CrossRef]

Wang, L.

Wei, Q.

Weitz, D.A.

F.C. MacKintosh, J.X. Zhu, D.J. Pine, and D.A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Welzel, J.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Amer. Acad. Derm. 37, 958–963 (1997).
[CrossRef]

Yao, G.

Zaccanti, G.

Zhu, J.X.

F.C. MacKintosh, J.X. Zhu, D.J. Pine, and D.A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Am.J.Phys. (1)

W.S. Bickel and W.M. Bailey, “Stokes vectors, Mueller matrices and polarized light,” Am.J.Phys. 53, 468–478 (1985).
[CrossRef]

Appl. Opt. (7)

Br. Med. J. (1)

R.M. MacKie. “Clinical recognition of early invasive malignant melanoma. Br. Med. J. 301, 1005–1006 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

M.J.C. Van Gemert, S.L. Jacques, H.J.C.M. Sterenborg, and W.M. Star, “Skin Optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

IEEE. Trans. Biomed. Eng. (1)

M.A. Afromowitz, J.B. Callis, D.M. Heimbach, L.A. DeSoto, and M.K. Norton, “Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth,” IEEE. Trans. Biomed. Eng. 35, 842–849 (1988).
[CrossRef] [PubMed]

J. Amer. Acad. Derm. (1)

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Amer. Acad. Derm. 37, 958–963 (1997).
[CrossRef]

Lasers in Surg. & Med. (1)

S.L. Jacques, J.R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers in Surg. & Med. 26, 119–129 (2000).
[CrossRef]

Opt. Comms. (1)

P.C.Y. Chang, J.G. Walker, K.I. Hopcraft, B. Ablitt, and E. Jakeman, “Polarization discrimination for active imaging in scattering media,” Opt. Comms. 159, 1–6 (1999).
[CrossRef]

Opt. Express (2)

Phys. Med. Biol. (4)

For a review see, J.C. Hebden, S.R. Arridge, and D.T. Delpy, “Optical imaging in medicine. 1. Experimental techniques,” Phys. Med. Biol. 42, 825–40 (1997).
[CrossRef] [PubMed]

L.O. Svaasand, T. Spott, J.B. Fishkin, T. Pham, B.J. Tromberg, and M.W. Berns, “Reflectance measurements of layered media with diffuse photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
[CrossRef] [PubMed]

H. Dehghani, D.T. Delpy, and S.R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999).
[CrossRef]

M. Firbank and D.T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Phys. Rev. B (1)

F.C. MacKintosh, J.X. Zhu, D.J. Pine, and D.A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Phys. Rev. E (1)

D. Bicout, C. Brosseau, A.S. Martinez, and J.M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Proc. SPIE. (1)

I.V. Meglinsky and S.J. Matcher, “Development of Monte Carlo technique for determination of skin oxygenation by near-infrared spectroscopy,” Proc. SPIE. 3598, 279–287 (1999).
[CrossRef]

Scanning (1)

Y.T. Pan and D.L. Farkas, “High-resolution imaging of living human skin with optical coherence tomography,” Scanning 21, 134–135 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental set up. The input polarization state is set by a λ/4 plate. Light scattered from the two layer scattering medium is then analyzed using a λ/4 plate and a linear polarizer (LP). The modulated light is detected using a PIN photodiode and measured with a lock-in amplifier.

Fig.2.
Fig.2.

Degree of polarization measured for different scatterer concentration in medium 1 and different input polarization states. Medium 2 is not present (totally absorbing).

Fig. 3.
Fig. 3.

Different types of photons emerging from the scattering medium. a) Linear polarization contains those that emerge maintaining the original state after a single, or relatively few scattering events, and multiply scattered (depolarized) light. b) circular contains those that have their helicity flipped by a mirror reflection, maintain the original polarization state by a series of forward scattering events and multiply scattered (depolarized) photons.

Fig.4.
Fig.4.

Degree of polarization measured for different scatterer concentration in medium 1 and different input polarization states. Medium 2 is a solid tissue phantom (µs=40mm-1, µ a=0.009mm-1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

μ s ( a ) d ( a ) = μ s ( b ) d ( b )
Degree of polarization = I co I cross I co + I cross

Metrics