Abstract

A study of polarization losses in free-space optical interconnects is presented. A generic method is used for the prediction of optical power losses originating from fabrication errors in the polarization characteristics of components or light sources in free-space optical systems. The impact of polarization errors is evaluated on an individual level by a sensitivity analysis and on a system level by a Monte-Carlo analysis. The method is demonstrated by application to an optical interconnect example and validated by comparison with experimental results. The simultaneous interaction of multiple tolerance parameters (commonly known as “tolerance stackup”) is shown to have a significant impact on polarization losses.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. A. B. Miller, "Physical reasons for optical interconnection,s" International Journal of Optoelectronics, 11, 155-168 (1997).
  2. D. J. Goodwill, "Free-space optical interconnect for Terabit network elements," Proceedings of Optics in Computing (Snowmass, Colorado, 1999).
  3. F. A. P. Tooley, "Challenges in Optically Interconnecting Electronics," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 2, No. 1, pp. 3-13, April 1996.
    [CrossRef]
  4. T.K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D'Asaro, M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer and R. E. Leibenguth, "1-Gb/s Two-Beam Transimpedance Smart-Pixel Optical Receivers Made from Hybrid GaAs MQW Modulators Bonded to 0.8�m Silicon CMOS," IEEE Photonics Technology Letters, Vol. 8, No. 3, pp. 422-424, March 1996.
    [CrossRef]
  5. F. Tooley, P. Sinha and A. Shang, "Time-differential operation of an optical transceive,r" Optics in Computing. 1997 Technical Digest Series Vol.8. Postconference Edition, Topical Meeting on Optics in Computing - OC97, Incline Village, NV, USA, pp. 73-75, 18-21 March 1997.
    [CrossRef]
  6. D. Zaleta, S. Patra, V. Ozguz, J. Ma and S. H. Lee, "Tolerancing of board-level-free-space optical interconnects," Appl. Opt. 35, 1317-1327 (1996).
    [CrossRef] [PubMed]
  7. S. P. Levitan, T. P. Kurzweg, P. J. Marchand, M. A. Rempel, D. M. Chiarulli, J. A. Martinez, J. M. Bridgen, C. Fan and F. B. McCormick, "Chatoyant: a computer-aided-design tool for free-space optoelectronic systems," Appl. Opt. 37, 6078-6092 (1998).
    [CrossRef]
  8. D. T. Neilson, "Tolerance of optical interconnections to misalignment," Appl. Opt. 38, 2282-2290 (1999).
    [CrossRef]
  9. F.B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton and E. Kerbis, "Six-Stage digital free-space optical switching network using symmetric self-electro-optic-effect devices," Appl. Opt. 32, 5153-5171 (1993).
    [CrossRef] [PubMed]
  10. G. C. Boisset, M. H. Ayliffe, B. Robertson, R. Iyer, Y. S. Liu, D. V. Plant, D. J. Goodwill, D. Kabal and D. Pavlasek, "Optomechanics for a four-stage hybrid-self-electro-optic-device-based free-space optical backplane," Appl. Opt. 36, 7341-7358 (1997).
    [CrossRef]
  11. M.H. Ayliffe and D. V. Plant, "A Generalized Method for Tolerancing Polarization Losses in Free-Space Optical Interconnects," Optics in Computing. 1997 Technical Digest Series Vol.8. Postconference Edition, Topical Meeting on Optics in Computing - OC97, Incline Village, NV, USA, pp. 221-223, 18-21 March 1997.
  12. D. T. Neilson, S. M. Prince, D. A. Baillie and F. A. P. Tooley, "Optical Design of a 1024-channel free-space sorting demonstrator," Appl. Opt. 36, 9243-9252 (1997).
    [CrossRef]
  13. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hintelong, R. J. Crisci, R. A. Novotny and H. S. Hinton, "Five-Stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays," Appl. Opt. 33, 1601-1618 (1994).
    [CrossRef] [PubMed]
  14. M. Yamaguchi, T. Yamamoto, K. Yukimatsu, S. Matsuo, C. Amano, Y. Nakano and T. Kurokawa, "Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays," Appl. Opt. 33, 1337-1343 (1994).
    [CrossRef] [PubMed]
  15. S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan and K. Kojima, "Influence of External Optical Feedback on Threshold and Spectral Characteristics of Vertical-Cavity Surface-Emitting Lasers," Photonics Technology Lett 6, (1994).
  16. R.M.A Azzam and W.M. Bashara, Ellipsometry and Polarized Light, (North-Holland Editor, Amsterdam, 1977).
  17. S. D. Nigam and J. U. Turner, "Review of statistical approaches to tolerance analysis," Computer-Aided Design 27, 6-15 (1995).
    [CrossRef]
  18. B. Robertson, "Design of an optical interconnect for photonic backplane applications," Appl. Opt. 37, 2974-2984 (1998).
    [CrossRef]
  19. J. L. Pezzanti and R. A Chipman, "Angular dependence of polarizing beam-splitter cubes," Appl. Opt. 33, 1916- 1928 (1994).
    [CrossRef]
  20. F. K. Lacroix, "Analysis and Implementation of a Clustered, Scaleable and Misalignment Tolerant Optical Interconnect," Chpt 3, Master of Engineering Thesis, McGill University, Montr�al, Canada, 1999.
  21. P. A. Williams, A. H. Rose, C. M. Wang, "Rotating-polarizer polarimeter for accurate retardance measurement," Appl. Opt. 36, 6466-72 (1997).
    [CrossRef]
  22. CODE V Version 8.30 Reference Manual, Chapter 6, pp. 65-67, Optical Research Associates, 3280 East Foothill Boulevard, Pasadena, California, California 91107, August 1999.

Other (22)

D. A. B. Miller, "Physical reasons for optical interconnection,s" International Journal of Optoelectronics, 11, 155-168 (1997).

D. J. Goodwill, "Free-space optical interconnect for Terabit network elements," Proceedings of Optics in Computing (Snowmass, Colorado, 1999).

F. A. P. Tooley, "Challenges in Optically Interconnecting Electronics," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 2, No. 1, pp. 3-13, April 1996.
[CrossRef]

T.K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D'Asaro, M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer and R. E. Leibenguth, "1-Gb/s Two-Beam Transimpedance Smart-Pixel Optical Receivers Made from Hybrid GaAs MQW Modulators Bonded to 0.8�m Silicon CMOS," IEEE Photonics Technology Letters, Vol. 8, No. 3, pp. 422-424, March 1996.
[CrossRef]

F. Tooley, P. Sinha and A. Shang, "Time-differential operation of an optical transceive,r" Optics in Computing. 1997 Technical Digest Series Vol.8. Postconference Edition, Topical Meeting on Optics in Computing - OC97, Incline Village, NV, USA, pp. 73-75, 18-21 March 1997.
[CrossRef]

D. Zaleta, S. Patra, V. Ozguz, J. Ma and S. H. Lee, "Tolerancing of board-level-free-space optical interconnects," Appl. Opt. 35, 1317-1327 (1996).
[CrossRef] [PubMed]

S. P. Levitan, T. P. Kurzweg, P. J. Marchand, M. A. Rempel, D. M. Chiarulli, J. A. Martinez, J. M. Bridgen, C. Fan and F. B. McCormick, "Chatoyant: a computer-aided-design tool for free-space optoelectronic systems," Appl. Opt. 37, 6078-6092 (1998).
[CrossRef]

D. T. Neilson, "Tolerance of optical interconnections to misalignment," Appl. Opt. 38, 2282-2290 (1999).
[CrossRef]

F.B. McCormick, T. J. Cloonan, F. A. P. Tooley, A. L. Lentine, J. M. Sasian, J. L. Brubaker, R. L. Morrison, S. L. Walker, R. J. Crisci, R. A. Novotny, S. J. Hinterlong, H. S. Hinton and E. Kerbis, "Six-Stage digital free-space optical switching network using symmetric self-electro-optic-effect devices," Appl. Opt. 32, 5153-5171 (1993).
[CrossRef] [PubMed]

G. C. Boisset, M. H. Ayliffe, B. Robertson, R. Iyer, Y. S. Liu, D. V. Plant, D. J. Goodwill, D. Kabal and D. Pavlasek, "Optomechanics for a four-stage hybrid-self-electro-optic-device-based free-space optical backplane," Appl. Opt. 36, 7341-7358 (1997).
[CrossRef]

M.H. Ayliffe and D. V. Plant, "A Generalized Method for Tolerancing Polarization Losses in Free-Space Optical Interconnects," Optics in Computing. 1997 Technical Digest Series Vol.8. Postconference Edition, Topical Meeting on Optics in Computing - OC97, Incline Village, NV, USA, pp. 221-223, 18-21 March 1997.

D. T. Neilson, S. M. Prince, D. A. Baillie and F. A. P. Tooley, "Optical Design of a 1024-channel free-space sorting demonstrator," Appl. Opt. 36, 9243-9252 (1997).
[CrossRef]

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hintelong, R. J. Crisci, R. A. Novotny and H. S. Hinton, "Five-Stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays," Appl. Opt. 33, 1601-1618 (1994).
[CrossRef] [PubMed]

M. Yamaguchi, T. Yamamoto, K. Yukimatsu, S. Matsuo, C. Amano, Y. Nakano and T. Kurokawa, "Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays," Appl. Opt. 33, 1337-1343 (1994).
[CrossRef] [PubMed]

S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan and K. Kojima, "Influence of External Optical Feedback on Threshold and Spectral Characteristics of Vertical-Cavity Surface-Emitting Lasers," Photonics Technology Lett 6, (1994).

R.M.A Azzam and W.M. Bashara, Ellipsometry and Polarized Light, (North-Holland Editor, Amsterdam, 1977).

S. D. Nigam and J. U. Turner, "Review of statistical approaches to tolerance analysis," Computer-Aided Design 27, 6-15 (1995).
[CrossRef]

B. Robertson, "Design of an optical interconnect for photonic backplane applications," Appl. Opt. 37, 2974-2984 (1998).
[CrossRef]

J. L. Pezzanti and R. A Chipman, "Angular dependence of polarizing beam-splitter cubes," Appl. Opt. 33, 1916- 1928 (1994).
[CrossRef]

F. K. Lacroix, "Analysis and Implementation of a Clustered, Scaleable and Misalignment Tolerant Optical Interconnect," Chpt 3, Master of Engineering Thesis, McGill University, Montr�al, Canada, 1999.

P. A. Williams, A. H. Rose, C. M. Wang, "Rotating-polarizer polarimeter for accurate retardance measurement," Appl. Opt. 36, 6466-72 (1997).
[CrossRef]

CODE V Version 8.30 Reference Manual, Chapter 6, pp. 65-67, Optical Research Associates, 3280 East Foothill Boulevard, Pasadena, California, California 91107, August 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Figure 1.
Figure 1.

Diagram of PBS/QWP assembly.

Figure 2.
Figure 2.

Flowchart of tolerancing method.

Figure 3.
Figure 3.

Schematic layout of the interconnect with polarization states.

Figure 4.
Figure 4.

Schematic diagram of system model.

Figure 5.
Figure 5.

Diagram of setup used for component characterization.

Figure 6.
Figure 6.

Plot of throughput versus retardance deviation.

Figure 7.
Figure 7.

Throughput versus QWP rotational misalignment.

Figure 8.
Figure 8.

Throughput versus azimuthal orientation of input P-polarization.

Figure 9.
Figure 9.

Throughput versus ellipticity at input.

Figure 10.
Figure 10.

Histogram of number of samples versus throughput for tolerances calculated using 1% falloff metric.

Figure 11.
Figure 11.

Histogram of number of samples versus throughput for tolerances calculated using 10% falloff metric.

Figure 12.
Figure 12.

Histogram of number of samples versus throughput for commercial tolerances.

Figure 13.
Figure 13.

Histogram of number of samples versus throughput distribution for demonstrator system.

Tables (1)

Tables Icon

Table 1. Summary of tolerances

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ = sin 1 ( 2 η η 2 + 1 )
M System = f ( θ 1 , δ 1 , θ 2 , δ 2 , θ 3 , δ 3 , θ 4 , δ 4 , θ 5 , δ 5 , K p 1 , K s 1 , K p 2 , K s 2 )

Metrics