Abstract

Deep subsurface imaging in tissues is demonstrated by employing both spectral and polarization discrimination of the backscattered photons. This technique provides enhancement in the visibility of subsurface structures via processing of the depolarized images obtained using polarized illumination at different wavelengths. The experimental results demonstrate detection and imaging of a high-scattering object located up to 1.5-cm beneath the surface of a host chicken tissue used as the model medium.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C., C. A. Puliafito, and J. Fujimoto, Optical coherence tomography, Science 254, 1178-1181 (1991).
  2. W. Denk, J. H. Strickler, and W. W. Webb, 2-photon laser scanning fluorescence microscopy, Science, 248, 73-76, (1990).
    [CrossRef] [PubMed]
  3. Y.C. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, R. R. Alfano, Second-harmonic tomography of tissues, Opt. Lett. 22, 1323 (1997).
    [CrossRef]
  4. Barry R. Masters, Andres Kriete, and Jorg Kukulies, Ultraviolet confocal fluorescence microscopy of the invitro cornea - redox metabolic imaging, Appl. Opt. 32, 592-596 (1993).
    [CrossRef] [PubMed]
  5. S. G. Demos, R.R. Alfano, Temporal gating in highly scattering media by the degree of optical polarization, Optics Lett. 21, 161 (1996).
    [CrossRef]
  6. O. Emile, F. Bretenaker, A. LeFloch, Rotating polarization imaging in turbid media, Opt. Lett. 21, 1706 (1996).
    [CrossRef] [PubMed]
  7. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, R. Kaiser, Coherence and polarization of light propagating through scattering media and biological tissues, Appl. Opt. 37, 7357 (1998).
    [CrossRef]
  8. P. Gleyzes, A.C. Boccara, H. SaintJahnes, Multichannel Nomarski microscope with polarization modulation: performance and applications, Opt. Lett. 22, 1529 (1997).
    [CrossRef]
  9. S. G. Demos, W. B. Wang and R.R. Alfano, Appl. Opt., 37, Imaging objects hidden in scattering media with fluorescence polarization preservation of contrast agents, 792-797 (1998).
    [CrossRef]
  10. S.P. Schilders, X.S. Gan, M. Gu, Appl. Opt., Resolution improvement in microscopic imaging through turbid media based on differential polarization gating, 37, 4300 (1998).
    [CrossRef]
  11. J.S. Tyo, Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging, J. Opt. Soc. Am. A 17, 1 (2000).
    [CrossRef]
  12. S.K. Gayen, M.E. Zevallos, M. Alrubaiee, J.M. Evans, R.R. Alfano, Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser, Appl. Opt. 37, 5327 (1998).
    [CrossRef]
  13. S. G. Demos, H. Savage, Alexandra S. Heerdt, S. Schantz and R.R. Alfano, Polarization filter for biomedical tissue optical imaging, Photochem. Photobiol. 66, 821 (1997).
    [CrossRef]
  14. A. H. Hielscher, J. R. Mourant, I. J.Bigio, Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions, Appl. Opt. 36, 125 (1997).
    [CrossRef] [PubMed]
  15. B.D. Cameron, M.J. Rakovic, M. Mehrubeoglu, G.W. Kattawar, S. Rastegar, L.V. Wang, G.L. Cote, Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium, Opt. Lett. 23, 485 (1998).
    [CrossRef]
  16. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R.R. Dasari, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ, IEEE Journal of Selected Topics in Quantum Electronics, 5, 1019 (1999).
    [CrossRef]
  17. R.R. Anderson, Q-switched ruby-laser irradiation of normal human skin - histologic and ultrastructural findings, Arch. Dermatol. 127, 1000 (1991).
    [CrossRef] [PubMed]
  18. J.A. Muccini, N. Kollias,S.B. Phillips, R.R. Anderson, AJ. Sober, M.J. Stiller, L.A. Drake, "Polarized-light photography in the evaluation of photoaging," J. Am. Acad. Dermatol. 33, 765 (1995).
    [CrossRef] [PubMed]
  19. S.L. Jacques, J.R. Roman, K Lee, "Imaging superficial tissues with polarized light," Laser Surg. Med. 26, 119 (2000).
    [CrossRef]
  20. S. G. Demos and R.R. Alfano, "Optical fingerprinting using polarisation contrast improvement," Electronics Letters, 32, 24, 2254-2255 (1997).
    [CrossRef]
  21. S. G. Demos and R.R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155, (1997
    [CrossRef] [PubMed]
  22. M. S. Patterson, S. Andersson-Engels, Brian C. Wilson, and E. K. Osei, "Absorption-spectroscopy in tissue-simulating materials - a theoretical and experimental-study of photon paths," Appl. Opt. 34, 22-30 (1995).
    [CrossRef] [PubMed]

Other

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C., C. A. Puliafito, and J. Fujimoto, Optical coherence tomography, Science 254, 1178-1181 (1991).

W. Denk, J. H. Strickler, and W. W. Webb, 2-photon laser scanning fluorescence microscopy, Science, 248, 73-76, (1990).
[CrossRef] [PubMed]

Y.C. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, R. R. Alfano, Second-harmonic tomography of tissues, Opt. Lett. 22, 1323 (1997).
[CrossRef]

Barry R. Masters, Andres Kriete, and Jorg Kukulies, Ultraviolet confocal fluorescence microscopy of the invitro cornea - redox metabolic imaging, Appl. Opt. 32, 592-596 (1993).
[CrossRef] [PubMed]

S. G. Demos, R.R. Alfano, Temporal gating in highly scattering media by the degree of optical polarization, Optics Lett. 21, 161 (1996).
[CrossRef]

O. Emile, F. Bretenaker, A. LeFloch, Rotating polarization imaging in turbid media, Opt. Lett. 21, 1706 (1996).
[CrossRef] [PubMed]

G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, R. Kaiser, Coherence and polarization of light propagating through scattering media and biological tissues, Appl. Opt. 37, 7357 (1998).
[CrossRef]

P. Gleyzes, A.C. Boccara, H. SaintJahnes, Multichannel Nomarski microscope with polarization modulation: performance and applications, Opt. Lett. 22, 1529 (1997).
[CrossRef]

S. G. Demos, W. B. Wang and R.R. Alfano, Appl. Opt., 37, Imaging objects hidden in scattering media with fluorescence polarization preservation of contrast agents, 792-797 (1998).
[CrossRef]

S.P. Schilders, X.S. Gan, M. Gu, Appl. Opt., Resolution improvement in microscopic imaging through turbid media based on differential polarization gating, 37, 4300 (1998).
[CrossRef]

J.S. Tyo, Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging, J. Opt. Soc. Am. A 17, 1 (2000).
[CrossRef]

S.K. Gayen, M.E. Zevallos, M. Alrubaiee, J.M. Evans, R.R. Alfano, Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser, Appl. Opt. 37, 5327 (1998).
[CrossRef]

S. G. Demos, H. Savage, Alexandra S. Heerdt, S. Schantz and R.R. Alfano, Polarization filter for biomedical tissue optical imaging, Photochem. Photobiol. 66, 821 (1997).
[CrossRef]

A. H. Hielscher, J. R. Mourant, I. J.Bigio, Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions, Appl. Opt. 36, 125 (1997).
[CrossRef] [PubMed]

B.D. Cameron, M.J. Rakovic, M. Mehrubeoglu, G.W. Kattawar, S. Rastegar, L.V. Wang, G.L. Cote, Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium, Opt. Lett. 23, 485 (1998).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R.R. Dasari, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ, IEEE Journal of Selected Topics in Quantum Electronics, 5, 1019 (1999).
[CrossRef]

R.R. Anderson, Q-switched ruby-laser irradiation of normal human skin - histologic and ultrastructural findings, Arch. Dermatol. 127, 1000 (1991).
[CrossRef] [PubMed]

J.A. Muccini, N. Kollias,S.B. Phillips, R.R. Anderson, AJ. Sober, M.J. Stiller, L.A. Drake, "Polarized-light photography in the evaluation of photoaging," J. Am. Acad. Dermatol. 33, 765 (1995).
[CrossRef] [PubMed]

S.L. Jacques, J.R. Roman, K Lee, "Imaging superficial tissues with polarized light," Laser Surg. Med. 26, 119 (2000).
[CrossRef]

S. G. Demos and R.R. Alfano, "Optical fingerprinting using polarisation contrast improvement," Electronics Letters, 32, 24, 2254-2255 (1997).
[CrossRef]

S. G. Demos and R.R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155, (1997
[CrossRef] [PubMed]

M. S. Patterson, S. Andersson-Engels, Brian C. Wilson, and E. K. Osei, "Absorption-spectroscopy in tissue-simulating materials - a theoretical and experimental-study of photon paths," Appl. Opt. 34, 22-30 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1.
Figure 1.

Schematic diagram of the experimental setup.

Figure 2.
Figure 2.

a) Cross polarized image of the tissue sample under 600-nm illumination. SPDI images of the sample obtained using 600-nm, 690-nm, 770-nm and, 970-nm illumination reveal the presence of the object located 1-cm underneath the surface: b) [970-770] nm, c) [770-690] nm and, d) [690-600] nm SPDI images.

Figure 3.
Figure 3.

Digitized intensity profile across a line that contains the target-object for the four images obtained under 600 nm, 690 nm, 770 nm and, 970 nm that led to the SPDI images shown in figure 2. The digitized intensity profile of the [970–770] nm SPDI image is also shown for comparison.

Figure 4.
Figure 4.

The digitized intensity profiles across a line on the SPDI images that contain the 4-mm object when the object is located 1-cm and 1.5-cm below the surface of the host tissue.

Metrics