Abstract

A low cost adaptive optics system constructed almost entirely of commercially available components is presented. The system uses a 37 actuator membrane mirror and operates at frame rates up to 800 Hz using a single processor. Numerical modelling of the membrane mirror is used to optimize parameters of the system. The dynamic performance of the system is investigated in detail using a diffractive wavefront generator based on a ferroelectric spatial light modulator. This is used to produce wavefronts with time-varying aberrations. The ability of the system to correct for Kolmogorov turbulence with different strengths and effective wind speeds is measured experimentally using the wavefront generator.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Vdovin and P. M. Sarro, "Flexible mirror micromachined in silicon," Appl. Opt. 34, 2968-2972 (1995).
    [CrossRef] [PubMed]
  2. E. Steinhaus and S. G. Lipson, "Bimorph piezoelectric flexible mirror," J. Opt. Soc. Am. 69, 478-481 (1979).
    [CrossRef]
  3. J. C. Daint , A. V. Koryabin, and A. V. Kudryashov, "Low-order adaptive deformable mirror," Appl. Opt. 37, 4663-4668 (1998).
    [CrossRef]
  4. D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, and V. Biliotti, "Adaptive optics wave-front corrector using addressable liquid-crystal retarders .2.," In Active and adaptive optical components, Proc. SPIE 1543, 133-143 (Osserv Astrofis Arcetri, I-50125 Florence, Ital , 1992).
  5. G. D. Love, "Wave-front correction and production of Zernike modes with a liquid- crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
    [CrossRef] [PubMed]
  6. S. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, "On the use of dual frequenc nematic material for adaptive optics systems: first results of a closed-loop experiment," Opt. Express 6, 2-6 (2000). http://www.opticsexpress.org/oearchive/source/18848.htm
    [CrossRef] [PubMed]
  7. http://okotech.com/mirrors/technical/index.html
  8. R. P. Grosso and M. Yellin, "The membrane mirror as an adaptive optical element," J. Opt. Soc. Am. 67, 399-406 (1977).
    [CrossRef]
  9. W. H. Press, S. A. Teukolsk , W. T. Vetterling, and B. P. Flanner, Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992).
  10. E. S. Claflin and N. Bareket, "Configuring an electrostatic membrane mirror by least- squares fitting with analytically derived influence functions," J. Opt. Soc. Am. A 3, 1833-1839 (1986).
    [CrossRef]
  11. F. Roddier, "The problematic of adaptive optics design," in Adaptive optics for astronomy, D. M. Alloin and J. M. Mariotti, eds., (Kluwer Academic, 1994), pp. 89-111.
  12. M. A. A. Neil, M. J. Booth, and T. Wilson, "Dynamic wave-front generation for the characterization and testing of optical systems," Opt. Lett. 23, 1849-1851 (1998).
    [CrossRef]
  13. A. lindemann, R. G. Lane, and J. C. Daint, "Simulation of time-evolving speckle patterns using Kolmogorov statistics," J. Mod. Opt. 40, 2381-2388 (1993).
    [CrossRef]

Other

G. Vdovin and P. M. Sarro, "Flexible mirror micromachined in silicon," Appl. Opt. 34, 2968-2972 (1995).
[CrossRef] [PubMed]

E. Steinhaus and S. G. Lipson, "Bimorph piezoelectric flexible mirror," J. Opt. Soc. Am. 69, 478-481 (1979).
[CrossRef]

J. C. Daint , A. V. Koryabin, and A. V. Kudryashov, "Low-order adaptive deformable mirror," Appl. Opt. 37, 4663-4668 (1998).
[CrossRef]

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, and V. Biliotti, "Adaptive optics wave-front corrector using addressable liquid-crystal retarders .2.," In Active and adaptive optical components, Proc. SPIE 1543, 133-143 (Osserv Astrofis Arcetri, I-50125 Florence, Ital , 1992).

G. D. Love, "Wave-front correction and production of Zernike modes with a liquid- crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
[CrossRef] [PubMed]

S. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, "On the use of dual frequenc nematic material for adaptive optics systems: first results of a closed-loop experiment," Opt. Express 6, 2-6 (2000). http://www.opticsexpress.org/oearchive/source/18848.htm
[CrossRef] [PubMed]

http://okotech.com/mirrors/technical/index.html

R. P. Grosso and M. Yellin, "The membrane mirror as an adaptive optical element," J. Opt. Soc. Am. 67, 399-406 (1977).
[CrossRef]

W. H. Press, S. A. Teukolsk , W. T. Vetterling, and B. P. Flanner, Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992).

E. S. Claflin and N. Bareket, "Configuring an electrostatic membrane mirror by least- squares fitting with analytically derived influence functions," J. Opt. Soc. Am. A 3, 1833-1839 (1986).
[CrossRef]

F. Roddier, "The problematic of adaptive optics design," in Adaptive optics for astronomy, D. M. Alloin and J. M. Mariotti, eds., (Kluwer Academic, 1994), pp. 89-111.

M. A. A. Neil, M. J. Booth, and T. Wilson, "Dynamic wave-front generation for the characterization and testing of optical systems," Opt. Lett. 23, 1849-1851 (1998).
[CrossRef]

A. lindemann, R. G. Lane, and J. C. Daint, "Simulation of time-evolving speckle patterns using Kolmogorov statistics," J. Mod. Opt. 40, 2381-2388 (1993).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (2169 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the adaptive optical system

Fig. 2.
Fig. 2.

Data flow for the adaptive optical system

Fig. 3.
Fig. 3.

Singular values of the membrane mirror influence matrix

Fig. 4.
Fig. 4.

Two modes of the membrane mirror corresponding to the largest (mode 1) and smallest (mode 37) singular values.

Fig. 5.
Fig. 5.

Singular values of the membrane mirror influence matrix weighted for Kolmogorov statistics

Fig. 6.
Fig. 6.

Mean Strehl, S=exp(-σ 2), correcting for Kolmogorov turbulence using the membrane mirror. (Monte Carlo with λ=633 nm, maximum actuator voltage V max=200V, maximum membrane deflection was 7.5 µm with all electrodes set to V max).

Fig. 7.
Fig. 7.

Video showing the output image with the adaptive optics system correcting for turbulence with D/r 0=6 and v/r 0=25Hz (nominal). (1.89Mb movie)

Fig. 8.
Fig. 8.

Plot of Strehl ratio v. number of spatial modes. [Exposure time 4 seconds, D/r 0=6, v/r 0=25Hz (nominal)]

Fig. 9.
Fig. 9.

Experimental performance of the AO system for quasi-Kolmogorov turbulence of different strengths and wind speeds. (g=-0.52, frame rate=800 s-1, 24 spatial correction modes)

Fig. 10.
Fig. 10.

The ratio of the measured wavefront sensor signal variances for the AO system off and on for sinusoidally varying input signals.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2 z ( x , y ) = P ( x , y ) T = ε 0 V 2 T d 2 ,
ϕ m = A m x m ,
x 0 = A m 1 ϕ 0 ,
A m 1 = V S 1 U T ,
C 1 2 ϕ = ( C 1 2 A m ) x
ϕ e = A m L ( A m 1 ϕ 0 ) ϕ 0
L ( x ) = { x x x max x max x x x > x max
σ e 2 = ϕ e 2 = ϕ e T ϕ e
x n = ( 1 β ) x n 1 + g Ms n

Metrics