Abstract

Optical diffusion tomography is an emerging technology that generates images of objects imbedded in turbid media using scattered light. To date, however, most demonstrations of this technology use a sphere or a collection of spheres as the imbedded object. Here we use a backpropagation algorithm and a planar geometry to reconstruct images of resolved objects (airplane models) imbedded in tissue phantoms. In addition, we show that we can locate the resolved objects in three dimensions in the turbid medium using only a single planar view. The imaging system uses diffuse photon density waves produced using kilohertz modulation (that is, essentially dc illumination).

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. B. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, "Frequency-domain optical image reconstruction in turbid media - an experimental study of single-target detectability," Appl. Opt. 36, 52-63 (1997).
    [CrossRef] [PubMed]
  2. H. B. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, "Frequency-domain optical image reconstruction in turbid media - an experimental study of single-target detectability: erratum," Appl. Opt. 36, 2995-2996 (1997).
    [CrossRef] [PubMed]
  3. M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20, 426-428 (1995).
    [CrossRef]
  4. S. Fantini, S. A. Walker, M. A. Franceschini, M. K, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
    [CrossRef]
  5. S. A. Walker, S. Fantini, and E. Gratton, "Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media," Appl. Opt. 36, 170-179 (1997).
    [CrossRef] [PubMed]
  6. W. Zhu, Y. Wang, Y. Yao, J. Chang, H. L. Graber, and R. L. Barbour, "Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method," J. Opt. Soc. Am. A 14, 799-807 (1997).
    [CrossRef]
  7. A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-based iterative image reconstruction scheme for time-resolved optical tomography," IEEE Trans. Med. Imag. 18, 262-271 (1999).
    [CrossRef]
  8. W. Zhu, Y. Wang, Y. Deng, Y. Yao, and R. L. Barbour, "A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography," IEEE Trans. Med. Imag. 16, 210-217 (1997).
    [CrossRef]
  9. C. L. Matson, "A diffraction tomographic model of the forward problem using diffuse photon density waves," Opt. Express 1, 6-11 (1997). http://www.opticsexpress.org/oearchive/source/1884.htm
    [CrossRef] [PubMed]
  10. C. L. Matson and H. Liu, "Analysis of the forward problem with diffuse photon density waves in turbid media by use of a diffraction tomography model," J. Opt. Soc. Am. A 16, 455-466 (1999).
    [CrossRef]
  11. C. L. Matson, N. Clark, L. McMackin, and J. S. Fender, "Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves," Appl. Opt. 36, 214-220 (1997).
    [CrossRef] [PubMed]
  12. C. L. Matson and H. Liu, "Backpropagation in turbid media," J. Opt. Soc. Am. A 16, 1254-1265 (1999).
    [CrossRef]
  13. The Interactive Data Language software package is available from Research Systems in Boulder, CO USA.
  14. H. Liu, C. L. Matson, K. Lau, and R. R. Mapakshi, "Experimental validation of a backpropagation algorithm for three-dimensional breast tumor localization," IEEE J. Select. Topics Quantum Electron. 5, 1049-1057 (1999).
    [CrossRef]
  15. D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, "Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis," Appl. Opt. 36, 75-92 (1997).
    [CrossRef] [PubMed]

Other

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, "Frequency-domain optical image reconstruction in turbid media - an experimental study of single-target detectability," Appl. Opt. 36, 52-63 (1997).
[CrossRef] [PubMed]

H. B. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, "Frequency-domain optical image reconstruction in turbid media - an experimental study of single-target detectability: erratum," Appl. Opt. 36, 2995-2996 (1997).
[CrossRef] [PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20, 426-428 (1995).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. K, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
[CrossRef]

S. A. Walker, S. Fantini, and E. Gratton, "Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media," Appl. Opt. 36, 170-179 (1997).
[CrossRef] [PubMed]

W. Zhu, Y. Wang, Y. Yao, J. Chang, H. L. Graber, and R. L. Barbour, "Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method," J. Opt. Soc. Am. A 14, 799-807 (1997).
[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-based iterative image reconstruction scheme for time-resolved optical tomography," IEEE Trans. Med. Imag. 18, 262-271 (1999).
[CrossRef]

W. Zhu, Y. Wang, Y. Deng, Y. Yao, and R. L. Barbour, "A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography," IEEE Trans. Med. Imag. 16, 210-217 (1997).
[CrossRef]

C. L. Matson, "A diffraction tomographic model of the forward problem using diffuse photon density waves," Opt. Express 1, 6-11 (1997). http://www.opticsexpress.org/oearchive/source/1884.htm
[CrossRef] [PubMed]

C. L. Matson and H. Liu, "Analysis of the forward problem with diffuse photon density waves in turbid media by use of a diffraction tomography model," J. Opt. Soc. Am. A 16, 455-466 (1999).
[CrossRef]

C. L. Matson, N. Clark, L. McMackin, and J. S. Fender, "Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves," Appl. Opt. 36, 214-220 (1997).
[CrossRef] [PubMed]

C. L. Matson and H. Liu, "Backpropagation in turbid media," J. Opt. Soc. Am. A 16, 1254-1265 (1999).
[CrossRef]

The Interactive Data Language software package is available from Research Systems in Boulder, CO USA.

H. Liu, C. L. Matson, K. Lau, and R. R. Mapakshi, "Experimental validation of a backpropagation algorithm for three-dimensional breast tumor localization," IEEE J. Select. Topics Quantum Electron. 5, 1049-1057 (1999).
[CrossRef]

D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, "Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis," Appl. Opt. 36, 75-92 (1997).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: MOV (370 KB)     
» Media 2: MOV (230 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the laboratory data collection and image reconstruction geometry. The dashed lines indicate the planes where the photon density wave is reconstructed.

Fig. 2.
Fig. 2.

(a) Picture of a 747 airplane model imbedded in a tissue phantom. (b) (371 KB) Movie of the three-dimensional reconstructed wave scattered by the airplane model.

Fig. 3.
Fig. 3.

(a) Picture of a Japanese Zero airplane model imbedded in a tissue phantom. (b) (231 KB) Movie of the three-dimensional reconstructed wave scattered by the airplane model.

Fig. 4.
Fig. 4.

PSF plots: dotted line - Boeing 747 data; dashed line - Japanese Zero data; solid line - optimally reconstructed data.

Metrics