Abstract

An optical coherence microscope (OCM) has been designed and constructed to acquire 3-dimensional images of highly scattering biological tissue. Volume-rendering software is used to enhance 3-D visualization of the data sets. Lateral resolution of the OCM is 5 µm (FWHM), and the depth resolution is 10 µm (FWHM) in tissue. The design trade-offs for a 3-D OCM are discussed, and the fundamental photon noise limitation is measured and compared with theory. A rotating 3-D image of a frog embryo is presented to illustrate the capabilities of the instrument.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.A. Izatt, M.D. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, Jr., "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Topics Quant. Electron. 2, 1017-1028 (1996).
    [CrossRef]
  2. A.M. Rollins, M.D. Kulkarni, S. Yazdanfar, R.Ung-arunyawee, and J.A. Izatt, "In vivo video rate optical coherence tomography," Optics Express 3, 219-229 (1998). http://www.opticsexpress.org/oearchive/source/5873.htm
    [CrossRef] [PubMed]
  3. S. Yazdanfar, M.D. Kulkarni, and J.A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Optics Express 1, 424-431 (1997), http://www.opticsexpress.org/oearchive/source/2834.htm
    [CrossRef] [PubMed]
  4. S.A. Boppart, M.E. Brezinski, B.E. Bouma, G.J. Tearney, and J.G. Fujimoto, "Investigation of developing embryonic morphology using optical coherence tomography," Dev. Biol. 177, 54-63 (1996).
    [CrossRef] [PubMed]
  5. S.A. Boppart, B.E. Bouma, M.E. Brezinski, G.J. Tearney, and J.G. Fujimoto, "Imaging developing neural morphology using optical coherence tomography," J. Neurosci. Methods 70, 65-72 (1996).
    [CrossRef] [PubMed]
  6. S.A. Boppart, G.J. Tearney, B.E. Bouma, J.F. Southern, M.E. Brezinski, and J.G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
    [CrossRef] [PubMed]
  7. S.A. Boppart, B.E. Bouma, C. Pitris, J.F. Southern, M.E. Brezinski, and J.G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nature Medicine 4, 861-865 (1998).
    [CrossRef] [PubMed]
  8. S.A. Boppart, M.E. Brezinski, C. Pitris, J.G. Fujimoto, "Optical coherence tomography for neurosurgical imaging of human intracortical melanoma," Neurosurgery 43, 834-841 (1998).
    [CrossRef] [PubMed]
  9. J.M. Herrmann, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, and J.G. Fujimoto, "Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography," Fertility and Sterility 70, 155-158 (1998).
    [CrossRef] [PubMed]
  10. S.A. Boppart, B.E. Bouma, C. Pitris, G.J. Tearney, J.F. Southern, M.E. Brezinski, and J.G. Fujimoto, "Interaoperative assessment of microsurgery with three-dimensional optical coherence tomography," Radiology 208, 81-86 (1998).
    [PubMed]
  11. A.F. Fercher, "Optical coherence tomography," J. Biomed. Optics 1, 157-173 (1996).
    [CrossRef]
  12. B.R. Masters, "Early development of optical low-coherence reflectometry and some recent biomedical applications," J. Biomed. Optics 4, 236-247 (1999).
    [CrossRef]
  13. S.R. Chinn and E.A. Swanson, "Blindness limitations in optical coherence domain reflectometry," Electronics Letters 29, 2025-2027 (1993)
    [CrossRef]
  14. G.J. Tearney, B.E. Bouma, S.A. Boppart, B. Golubovic, E.A. Swanson, and J.G. Fujimoto, "Rapid acquisition of in vivo biological images by use of optical coherence tomography," Optics Letters 21, 1408- 1410 (1996).
    [CrossRef] [PubMed]
  15. M.D. Duncan, M. Bashkansky, and J. Reintjes, "Subsurface defect detection in materials using optical coherence tomography," Optics Express 2, 540-545 (1998), http://www.opticsexpress.org/oearchive/source/4710.htm
    [CrossRef] [PubMed]
  16. M. Imai, T. Yano, K. Motoi, and A. Odajima, "Piezoelectrically induced optical phase modulation of light in single-mode fibers," J. Quantum Electronics 28, 1901-1908 (1992).
    [CrossRef]
  17. W.V. Sorin and D.M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photonics Technology Letters 4, 1404-1406 (1992).
    [CrossRef]
  18. B. Saleh, Equation 5.93 in Photoelectron Statistics (Springer-Verlag, New York 1978).
  19. A. Kaufman, "Trends in volume visualization and volume graphics" in Scientific Visualization, L. Rosenblum, ed. (Academic, San Diego, CA 1994).

Other

J.A. Izatt, M.D. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, Jr., "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Topics Quant. Electron. 2, 1017-1028 (1996).
[CrossRef]

A.M. Rollins, M.D. Kulkarni, S. Yazdanfar, R.Ung-arunyawee, and J.A. Izatt, "In vivo video rate optical coherence tomography," Optics Express 3, 219-229 (1998). http://www.opticsexpress.org/oearchive/source/5873.htm
[CrossRef] [PubMed]

S. Yazdanfar, M.D. Kulkarni, and J.A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography," Optics Express 1, 424-431 (1997), http://www.opticsexpress.org/oearchive/source/2834.htm
[CrossRef] [PubMed]

S.A. Boppart, M.E. Brezinski, B.E. Bouma, G.J. Tearney, and J.G. Fujimoto, "Investigation of developing embryonic morphology using optical coherence tomography," Dev. Biol. 177, 54-63 (1996).
[CrossRef] [PubMed]

S.A. Boppart, B.E. Bouma, M.E. Brezinski, G.J. Tearney, and J.G. Fujimoto, "Imaging developing neural morphology using optical coherence tomography," J. Neurosci. Methods 70, 65-72 (1996).
[CrossRef] [PubMed]

S.A. Boppart, G.J. Tearney, B.E. Bouma, J.F. Southern, M.E. Brezinski, and J.G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

S.A. Boppart, B.E. Bouma, C. Pitris, J.F. Southern, M.E. Brezinski, and J.G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nature Medicine 4, 861-865 (1998).
[CrossRef] [PubMed]

S.A. Boppart, M.E. Brezinski, C. Pitris, J.G. Fujimoto, "Optical coherence tomography for neurosurgical imaging of human intracortical melanoma," Neurosurgery 43, 834-841 (1998).
[CrossRef] [PubMed]

J.M. Herrmann, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, and J.G. Fujimoto, "Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography," Fertility and Sterility 70, 155-158 (1998).
[CrossRef] [PubMed]

S.A. Boppart, B.E. Bouma, C. Pitris, G.J. Tearney, J.F. Southern, M.E. Brezinski, and J.G. Fujimoto, "Interaoperative assessment of microsurgery with three-dimensional optical coherence tomography," Radiology 208, 81-86 (1998).
[PubMed]

A.F. Fercher, "Optical coherence tomography," J. Biomed. Optics 1, 157-173 (1996).
[CrossRef]

B.R. Masters, "Early development of optical low-coherence reflectometry and some recent biomedical applications," J. Biomed. Optics 4, 236-247 (1999).
[CrossRef]

S.R. Chinn and E.A. Swanson, "Blindness limitations in optical coherence domain reflectometry," Electronics Letters 29, 2025-2027 (1993)
[CrossRef]

G.J. Tearney, B.E. Bouma, S.A. Boppart, B. Golubovic, E.A. Swanson, and J.G. Fujimoto, "Rapid acquisition of in vivo biological images by use of optical coherence tomography," Optics Letters 21, 1408- 1410 (1996).
[CrossRef] [PubMed]

M.D. Duncan, M. Bashkansky, and J. Reintjes, "Subsurface defect detection in materials using optical coherence tomography," Optics Express 2, 540-545 (1998), http://www.opticsexpress.org/oearchive/source/4710.htm
[CrossRef] [PubMed]

M. Imai, T. Yano, K. Motoi, and A. Odajima, "Piezoelectrically induced optical phase modulation of light in single-mode fibers," J. Quantum Electronics 28, 1901-1908 (1992).
[CrossRef]

W.V. Sorin and D.M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photonics Technology Letters 4, 1404-1406 (1992).
[CrossRef]

B. Saleh, Equation 5.93 in Photoelectron Statistics (Springer-Verlag, New York 1978).

A. Kaufman, "Trends in volume visualization and volume graphics" in Scientific Visualization, L. Rosenblum, ed. (Academic, San Diego, CA 1994).

Supplementary Material (2)

» Media 1: MOV (2529 KB)     
» Media 2: MOV (386 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical schematic of the optical coherence microscope.

Fig. 2.
Fig. 2.

Phase dependence of the output fringe signal.

Fig. 3.
Fig. 3.

Maximum powers in the output fringe signal at the first two harmonics of the piezo-driving voltage.

Fig. 4.
Fig. 4.

Photodetector noise as a function of reference beam power. A spectrum analyzer was used to measure the photodetector noise (solid circles) at 122.5 KHz with a bandwidth BW=3 KHz. The theoretical curve (solid line) is calculated using this value of the bandwidth in equation (6).

Fig. 5.
Fig. 5.

OCM signal-to-noise ratio as a function of reference beam power. The solid line is calculated from equation (8) with no adjustable parameters. The dashed line includes an additional multiplicative constant of 0.40.

Fig. 6.
Fig. 6.

First frame of the movie of a frog embryo at stage 41 of development. The movie is provided in two sizes: a 2.46 MB file and also a 385 KB version with slightly lower resolution but faster download time.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I out = I 0 cos ( α sin ω t + ϕ )
P 1 = 2 I 0 2 J 1 2 ( α ) sin 2 ϕ
P 2 = 2 I 0 2 J 2 2 ( α ) cos 2 ϕ
Var ( n ) = < n > + < n > 2 N
Var ( n ) = 2 [ < n > 2 + 1 N ( < n > 2 ) 2 ] = < n > + 1 2 < n > 2 N
V rms noise = g [ ( R · NEP ) 2 · BW ] + [ 2 η e 2 BW P ref E ν ] + [ ( η e P ref E ν ) 2 τ coh BW ]
V rms signal = 1.31 η eg P ref P samp E ν
SNR = 1.31 η e P ref P samp E ν [ ( R . NEP ) 2 . BW ] + [ 2 η e 2 BW P ref E ν ] + [ ( η e P ref E ν ) 2 τ coh BW ]
[ Pixel RGB ] = n α n * [ Voxel RGB ] n
α n = 1

Metrics