Abstract

We analyzed optical-signal processing based on time-space conversion in an arrayed-waveguide grating (AWG). General expressions for the electric fields needed to design frequency filters were obtained. We took into account the effects of the waveguides and clearly distinguished the temporal frequency axis from the spatial axis at the focal plane, at which frequency filters were placed. Using the analytical results, we identified the factors limiting the input-pulse width and clarified the windowing effect and the effect ofphase fluctuation in the arrayed waveguide.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quant. Electron. 19, 161–237 (1995).
    [CrossRef]
  2. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. of Quant. Electron. 28, 2251–2261 (1992).
    [CrossRef]
  3. M. C. Nuss, M. Li, T.H. Chiu, A.M. Weiner, and A. Partovi, “Time-to-spacemappingof femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
    [CrossRef] [PubMed]
  4. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P.K.L. Yu, and Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
    [CrossRef] [PubMed]
  5. K. Takasago, M. Takekawa, F. Kannari, M. Tani, and K. Sakai, “Accurate pulse shaping of femtosecond lasers using programmable phase-onlymodulator,” Jpn. J. Appl. Phys. 35, L1430–L1433 (1996).
    [CrossRef]
  6. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
    [CrossRef]
  7. H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
    [CrossRef]
  8. H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
    [CrossRef]
  9. H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “An optical phase-shift keying direct detection receiver using a high-resolution arrayed-waveguide grating,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper TuO4.
  10. H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.
  11. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
    [CrossRef]
  12. A.M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond pulsesby use of a 128-element liquid-crystal phase modulator,” IEEE J. Quant. Electron. 28, 908–920 (1992).
    [CrossRef]
  13. J. Paye and A. Migus, “Space-timeWigner functions and their application to the analysis of a pulse shaper,” J. Opt. Soc. Am. B 12, 1480–1490 (1995).
    [CrossRef]
  14. H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “Differential processing using an arrayed-waveguide grating,” IEICE Trans. Commun. E82-B, 1252–1258 (1999).
  15. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optic. Quant. Electron. 22, 391–416 (1990).
    [CrossRef]
  16. H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14, 1097–1105 (1996).
    [CrossRef]
  17. K. Takada, H. Yamada, and Y. Inoue, “Origin of channel crosstalk in 100-GHz-spaced silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 31, 1176–1177 (1995).
    [CrossRef]
  18. T. Goh, S. Suzuki, and A. Sugita, “Estimation of Waveguide Phase Error in Silica-BasedWaveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
    [CrossRef]

1999 (2)

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
[CrossRef]

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “Differential processing using an arrayed-waveguide grating,” IEICE Trans. Commun. E82-B, 1252–1258 (1999).

1998 (1)

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

1997 (2)

T. Goh, S. Suzuki, and A. Sugita, “Estimation of Waveguide Phase Error in Silica-BasedWaveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

1996 (2)

K. Takasago, M. Takekawa, F. Kannari, M. Tani, and K. Sakai, “Accurate pulse shaping of femtosecond lasers using programmable phase-onlymodulator,” Jpn. J. Appl. Phys. 35, L1430–L1433 (1996).
[CrossRef]

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14, 1097–1105 (1996).
[CrossRef]

1995 (4)

K. Takada, H. Yamada, and Y. Inoue, “Origin of channel crosstalk in 100-GHz-spaced silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 31, 1176–1177 (1995).
[CrossRef]

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quant. Electron. 19, 161–237 (1995).
[CrossRef]

J. Paye and A. Migus, “Space-timeWigner functions and their application to the analysis of a pulse shaper,” J. Opt. Soc. Am. B 12, 1480–1490 (1995).
[CrossRef]

P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P.K.L. Yu, and Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (2)

A.M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond pulsesby use of a 128-element liquid-crystal phase modulator,” IEEE J. Quant. Electron. 28, 908–920 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. of Quant. Electron. 28, 2251–2261 (1992).
[CrossRef]

1990 (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optic. Quant. Electron. 22, 391–416 (1990).
[CrossRef]

1988 (1)

Amano, C.

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “Differential processing using an arrayed-waveguide grating,” IEICE Trans. Commun. E82-B, 1252–1258 (1999).

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “An optical phase-shift keying direct detection receiver using a high-resolution arrayed-waveguide grating,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper TuO4.

Chang, W. S. C.

Chiu, T.H.

Fainman, Y.

Goh, T.

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “Differential processing using an arrayed-waveguide grating,” IEICE Trans. Commun. E82-B, 1252–1258 (1999).

T. Goh, S. Suzuki, and A. Sugita, “Estimation of Waveguide Phase Error in Silica-BasedWaveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[CrossRef]

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “An optical phase-shift keying direct detection receiver using a high-resolution arrayed-waveguide grating,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper TuO4.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

Heritage, J. P.

Hirano, A.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

Inoue, Y.

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
[CrossRef]

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

K. Takada, H. Yamada, and Y. Inoue, “Origin of channel crosstalk in 100-GHz-spaced silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 31, 1176–1177 (1995).
[CrossRef]

Ishii, M.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Ishii, T.

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

Kannari, F.

K. Takasago, M. Takekawa, F. Kannari, M. Tani, and K. Sakai, “Accurate pulse shaping of femtosecond lasers using programmable phase-onlymodulator,” Jpn. J. Appl. Phys. 35, L1430–L1433 (1996).
[CrossRef]

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optic. Quant. Electron. 22, 391–416 (1990).
[CrossRef]

Kirschner, E. M.

Kurokawa, T.

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
[CrossRef]

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “Differential processing using an arrayed-waveguide grating,” IEICE Trans. Commun. E82-B, 1252–1258 (1999).

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “An optical phase-shift keying direct detection receiver using a high-resolution arrayed-waveguide grating,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper TuO4.

Leaird, D. E.

A.M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond pulsesby use of a 128-element liquid-crystal phase modulator,” IEEE J. Quant. Electron. 28, 908–920 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. of Quant. Electron. 28, 2251–2261 (1992).
[CrossRef]

Li, M.

Mazurenko, Y. T.

Migus, A.

Naganuma, K.

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
[CrossRef]

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Nuss, M. C.

Oda, K.

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14, 1097–1105 (1996).
[CrossRef]

Okamoto, K.

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
[CrossRef]

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “Differential processing using an arrayed-waveguide grating,” IEICE Trans. Commun. E82-B, 1252–1258 (1999).

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “An optical phase-shift keying direct detection receiver using a high-resolution arrayed-waveguide grating,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper TuO4.

Paek, E. G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. of Quant. Electron. 28, 2251–2261 (1992).
[CrossRef]

Partovi, A.

Patel, J. S.

A.M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond pulsesby use of a 128-element liquid-crystal phase modulator,” IEEE J. Quant. Electron. 28, 908–920 (1992).
[CrossRef]

Paye, J.

Reitze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. of Quant. Electron. 28, 2251–2261 (1992).
[CrossRef]

Sakai, K.

K. Takasago, M. Takekawa, F. Kannari, M. Tani, and K. Sakai, “Accurate pulse shaping of femtosecond lasers using programmable phase-onlymodulator,” Jpn. J. Appl. Phys. 35, L1430–L1433 (1996).
[CrossRef]

Sato, K.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

Sugita, A.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of Waveguide Phase Error in Silica-BasedWaveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[CrossRef]

Sun, P. C.

Suzuki, S.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of Waveguide Phase Error in Silica-BasedWaveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[CrossRef]

Takada, K.

K. Takada, H. Yamada, and Y. Inoue, “Origin of channel crosstalk in 100-GHz-spaced silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 31, 1176–1177 (1995).
[CrossRef]

Takahashi, H.

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14, 1097–1105 (1996).
[CrossRef]

Takasago, K.

K. Takasago, M. Takekawa, F. Kannari, M. Tani, and K. Sakai, “Accurate pulse shaping of femtosecond lasers using programmable phase-onlymodulator,” Jpn. J. Appl. Phys. 35, L1430–L1433 (1996).
[CrossRef]

Takekawa, M.

K. Takasago, M. Takekawa, F. Kannari, M. Tani, and K. Sakai, “Accurate pulse shaping of femtosecond lasers using programmable phase-onlymodulator,” Jpn. J. Appl. Phys. 35, L1430–L1433 (1996).
[CrossRef]

Takenouchi, H.

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
[CrossRef]

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “Differential processing using an arrayed-waveguide grating,” IEICE Trans. Commun. E82-B, 1252–1258 (1999).

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “An optical phase-shift keying direct detection receiver using a high-resolution arrayed-waveguide grating,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper TuO4.

Tani, M.

K. Takasago, M. Takekawa, F. Kannari, M. Tani, and K. Sakai, “Accurate pulse shaping of femtosecond lasers using programmable phase-onlymodulator,” Jpn. J. Appl. Phys. 35, L1430–L1433 (1996).
[CrossRef]

Toba, H.

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14, 1097–1105 (1996).
[CrossRef]

Tsuda, H.

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
[CrossRef]

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “Differential processing using an arrayed-waveguide grating,” IEICE Trans. Commun. E82-B, 1252–1258 (1999).

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “An optical phase-shift keying direct detection receiver using a high-resolution arrayed-waveguide grating,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper TuO4.

Weiner, A. M.

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quant. Electron. 19, 161–237 (1995).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. of Quant. Electron. 28, 2251–2261 (1992).
[CrossRef]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
[CrossRef]

Weiner, A.M.

M. C. Nuss, M. Li, T.H. Chiu, A.M. Weiner, and A. Partovi, “Time-to-spacemappingof femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
[CrossRef] [PubMed]

A.M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond pulsesby use of a 128-element liquid-crystal phase modulator,” IEEE J. Quant. Electron. 28, 908–920 (1992).
[CrossRef]

Wullert, J. R.

A.M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond pulsesby use of a 128-element liquid-crystal phase modulator,” IEEE J. Quant. Electron. 28, 908–920 (1992).
[CrossRef]

Yamada, H.

K. Takada, H. Yamada, and Y. Inoue, “Origin of channel crosstalk in 100-GHz-spaced silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 31, 1176–1177 (1995).
[CrossRef]

Yu, P.K.L.

Electron. Lett. (3)

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Takenouchi, H. Tsuda, K. Naganuma, T. Kurokawa, Y. Inoue, and K. Okamoto, “Differential processing of ultrashort optical pulses using arrayed-waveguide grating with phase-only filter,” Electron. Lett. 34, 1245–1246 (1998).
[CrossRef]

K. Takada, H. Yamada, and Y. Inoue, “Origin of channel crosstalk in 100-GHz-spaced silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 31, 1176–1177 (1995).
[CrossRef]

IEEE J. of Quant. Electron. (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. of Quant. Electron. 28, 2251–2261 (1992).
[CrossRef]

IEEE J. Quant. Electron. (1)

A.M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond pulsesby use of a 128-element liquid-crystal phase modulator,” IEEE J. Quant. Electron. 28, 908–920 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, and T. Kurokawa, “Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 11, 569–571 (1999).
[CrossRef]

IEICE Trans. Commun. (1)

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “Differential processing using an arrayed-waveguide grating,” IEICE Trans. Commun. E82-B, 1252–1258 (1999).

J. Lightwave Technol. (2)

T. Goh, S. Suzuki, and A. Sugita, “Estimation of Waveguide Phase Error in Silica-BasedWaveguides,” J. Lightwave Technol. 15, 2107–2113 (1997).
[CrossRef]

H. Takahashi, K. Oda, and H. Toba, “Impact of crosstalk in an arrayed-waveguide multiplexer on N×N optical interconnection,” J. Lightwave Technol. 14, 1097–1105 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

K. Takasago, M. Takekawa, F. Kannari, M. Tani, and K. Sakai, “Accurate pulse shaping of femtosecond lasers using programmable phase-onlymodulator,” Jpn. J. Appl. Phys. 35, L1430–L1433 (1996).
[CrossRef]

Opt. Lett. (2)

Optic. Quant. Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optic. Quant. Electron. 22, 391–416 (1990).
[CrossRef]

Prog. Quant. Electron. (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quant. Electron. 19, 161–237 (1995).
[CrossRef]

Other (2)

H. Takenouchi, H. Tsuda, C. Amano, T. Goh, K. Okamoto, and T. Kurokawa, “An optical phase-shift keying direct detection receiver using a high-resolution arrayed-waveguide grating,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper TuO4.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, and C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in Technical Digest of Optical Fiber Conference (OFC) ‘99, paper PD32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Figure 1.
Figure 1.

Schematic diagrams of time-space-conversion optical-signal processing using (a) DGs and (b) AWGs.

Figure 2.
Figure 2.

Model and axes used for analysis. Spatial frequency axes were used instead of spatial axes at the interface between the I/O waveguide and the first slab waveguide and at the focal plane.

Figure 3.
Figure 3.

Spectral filtering using narrow-stripe mirror: (a) profile of narrow stripe mirror, (b) electric field near ξ=0, (c) temporal frequency spectrum reflected by narrow stripe mirror, (d) temporal output waveform. The shape of the output waveform reflects crosstalk at the focal plane.

Figure 4.
Figure 4.

Figure of merit (flatness of envelope of temporal waveform) and loss versus shape of distribution function (a/Nd). Envelope of temporal waveform became flatter as a/Nd became larger, but the loss became larger. There is thus a trade-off relation between loss and the figure of merit. The a/Nd of the previously reported AWG was 0.57.

Figure 5.
Figure 5.

Number-of-waveguides dependence on coefficient of determination (R 2) calculated from output pulse shape for m=72. A phase error of 0.8×10-2 rad/mm is a typical standard deviation in a silica-based waveguide with a relative refractive index difference of 0.75%.

Tables (1)

Tables Icon

Table 1 Parameters used in AWG simulation

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = u ( t ) exp ( i 2 π ν 0 t ) ,
F ( ν ) = U ( ν ν 0 ) U ν .
F 0 , ν ( x 0 ) = U ν · e ( x 0 ) = U ν w IO π · exp ( x 0 2 w IO 2 ) .
β ( x 1 ) = w IO π i α exp { ( π w IO ) 2 ( x 1 α ) 2 } ,
α = c L f n s ν 0 ,
f 1 , ν ( x 1 ) = U ν · [ { β ( x 1 ) · rect ( x 1 Nd ) } * δ S ( x 1 ) ] * exp ( π x 1 2 w AW 2 ) ,
δ S ( x ) p = N 2 N 2 1 δ ( x 1 pd ) ,
rect ( x ) = { 1 ( x < 1 2 ) 0 ( otherwize ) ,
θ ( x , ν ) = 2 π m ν ν 0 d x · δ S ( x ) .
f 2 , ν ( x 2 ) = exp { i θ ( x 2 , ν ) } · f 1 , ν ( x 2 )
= U ν · [ { β ( x 2 ) · rect ( x 2 Nd ) · exp ( i 2 π m ν ν 0 d x 2 ) } * δ S ( x 2 ) ]
* exp ( π x 2 2 w AW 2 ) .
F 3 , ν ( ξ ) = π w AW 2 i α U ν { B ( ξ ) * sinc ( Nd ξ ) * δ ( ξ m ν ν 0 d ) } Δ Sum ( ξ ) exp ( π 2 w AW 2 ξ 2 ) ,
ξ ν 0 n s c L f x 3 = x 3 α ,
Δ S ( ξ ) = p = N 2 N 2 1 exp ( i 2 π pd ξ )
B ( ξ ) = α 3 2 i π w IO exp { ( α ξ ) 2 w IO 2 } .
ξ = m ν ν 0 d
γ = ν x 3 = ν 0 2 n s d mc L f = ν 0 d m α .
ν FSR = ν 0 m .
Δ ν = ν 0 Nm .
Δ ν = ν 0 d m Δ ξ ν 0 N eff · m ,
G 3 , ν ( ξ ) = π w AW 2 i α · U ν · H ( ξ ) · { B ( ξ ) * sinc ( Nd ξ ) * δ ( ξ m ν ν 0 d ) }
× Δ S ( ξ ) · exp ( π 2 w AW 2 ξ 2 ) ,
g 2 , ν ( x 2 ) = U ν · { h ( x 2 ) * ( β ( x 2 ) · rect ( x 2 Nd ) · exp ( i 2 π m ν ν 0 d x 2 ) ) * δ S ( x 2 ) }
* exp ( π x 2 2 w 2 )
g 1 , ν ( x 1 ) = U ν · [ { h ( x 1 ) * ( β ( x 1 ) . rect ( x 1 Nd ) · exp ( i 2 π m ν ν 0 d x 1 ) ) * δ S ( x 1 ) }
× exp ( i 2 π m ν ν 0 d x 1 ) ] * exp ( π x 1 2 w 2 ) .
G 0 , ν ( ξ ) = π w AW 2 i α · U ν · { H ( ξ + m ν ν 0 d ) · ( B ( ξ ) * sinc ( Nd ξ ) ) · Δ S ( ξ + m ν ν 0 d ) }
× exp ( π 2 w AW 2 ξ 2 ) .
V ν = e ( α ξ ) · G 0 , ν ( ξ ) d ξ
= π w AW 2 i α · U ν e ( α ξ ) · H ( ξ + m ν ν 0 d ) · ( B ( ξ ) * sinc ( Nd ξ ) ) · Δ S ( ξ + m ν ν 0 d )
× exp ( π 2 w AW 2 ξ 2 ) d ξ .
Δ t = 1 ν FSR = m ν 0 .
T 0 = 1 Δ ν = Nm ν 0 .

Metrics